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COMPARISON OF DIFFERENT METHODOLOGIES TOIDENTIFY DIFFERENTIALLY EXPRESSED GENES INTWO-SAMPLE CDNA MICROARRAYSKATHLEEN MARCHAL1�, KRISTOF ENGELEN1, JOS DE BRABANTER1, STEINAERTS1, BART DE MOOR11Department of Eletrial Engineering, ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10,3001 Leuven-Heverlee, Belgiumkathleen.marhal�esat.kuleuven.a.behttp://www.esat.kuleuven.a.be/�dna/BioI/TORIK AYOUBI22Flanders Interuniversity Institute of Biotehnology (VIB),9050, Ghent, BelgiumPAUL VAN HUMMELEN33Miroarray Faility, Flanders Interuniversity Institute of Biotehnology (VIB),3000 Leuven, BelgiumReeived (Day Month Year)Revised (Day Month Year)This review ompares di�erent methods to identify di�erentially expressed genes in two-sample DNA arrays. A two-sample experiment is a ommonly used design to omparerelative mRNA abundane between two di�erent samples. This simple design is us-tomarily used by biologists as a �rst sreening before relying on more omplex designs.Statistial tehniques are quite well developed for suh simple designs. For the identi�a-tion of di�erentially expressed genes, four methods were desribed and ompared: a foldtest, a t-test (Long et al., 2001), SAM (Tusher et al., 2001) and an ANOVA-based boot-strap method (Kerr and Churhill, 2001). Mutual omparison of these methods learlyillustrates eah method's advantages and pitfalls. Our analyses showed that the mostreliable preditions are made by the ombined use of di�erent methods, eah of whihis based on a di�erent statisti. The ANOVA-based bootstap method used in this studyperformed rather poorly in identifying di�erentially expressed genes.1. IntrodutionMiroarray experiments measure the expression levels of many genes simultaneouslyand an be onsidered as upsaled Northern-blot analyses. Eah spot on an arrayrepresents a distint oding sequene of the genome of interest. A two-sample design�Corresponding author 1
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2 Marhal, Engelen, De Brabanter, Aerts, Ayoubi, De Moor & Van Hummelenaims at identifying genes expressed di�erentially in one ondition versus the other.Most biologists start o� with suh straightforward experiments to roughly identifythe genes involved in the biologial system studied. Based on the onlusions drawn,more omplex experiments are designed. Therefore, it is of importane to reliablyidentify the genes that are di�erentially expressed. To inrease reliability, nowa-days experiments are designed as suh that more repliates of eah measurementare available. The availability of repliates allows onlusions about di�erentiallyexpressed genes to be inferred in a statistially more solid way. However, due tothe high experimental ost the number of available repliate measurements remainslimited. Novel algorithms designed for the analysis of suh two sample experimentsare being developed. In this study the performane of four suh methods was evalu-ated. Although these methods an theoretially be used for other types of arrays, wefoused on DNA arrays only. During a DNA miroarray experiment, mRNA of areferene (ondition 1) and indued sample (ondition 2) is isolated and eah labeledwith a distint uoresent dye. Subsequently, both labeled samples are hybridizedsimultaneously to the array. Fluoresent signals of both hannels are measured andused for further analysis (for reviews on DNA miroarrays see [3,2,18℄). A ompleteanalysis ow is not only restrited to identyfying di�erentially expressed genes butgenerally omprises a data transformation, a data �ltering and a normalization stepprior to performing a statistial test. In a DNA array the rate to whih a geneis di�erentially expressed is usually estimated by the ratio of the expression levelsbetween two the onditions.2. Data setThe dataset used in this review ompares a spontaneous knok-out (KO) and wild-type (WT) mouse. In the spontaneous knok-out mouse, the Hmgi- gene has beendisrupted by a 100kb deletion. Hmgi- RNA was onsequently not transribed andtherefore did not result in a protein. HMGI proteins play a ritial role at promoterregions in the orret assembly and stabilization of higher order protein-DNA om-plexes required for eÆient transriptional ativation of genes [6℄.From both mie mRNA was extrated, labeled and hybridized on a mouse DNAmiroarray ontaining 4202 DNA fragments of 0.5 to 2kb. The DNA fragmentswere PCR ampli�ed, puri�ed and spotted in dupliate on Type-VII silane oatedslides (at#: RPK0174, Amersham BioSienes, UK) using a Moleular DynamisGeneration III printer with 12 apillary pins (Amersham BioSienes). The dupli-ate spots were arrayed distant from eah other on the left and right side of theslide. For the probes, 5 �g of total RNA was ampli�ed using a modi�ed protool ofin vitro transription as desribed earlier and labeled during a reverse transriptionreation of the ampli�ed RNA [15℄ with either Cy3-dCTP (green dye) or Cy5-dCTP(red dye). The probes were mixed and hybridized overnight using an automati slideproessor (Amersham BioSienes). The hybridizations were repeated in the follow-ing way: in a �rst analysis, the test sample (KO) was labeled with the red dye while
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Analysis of Two Sample Miroarray Data 3the orresponding referene (WT) was labeled with the green dye, and in a seondanalysis the olors were reversed (i.e. olor ip experiment). Sine every gene wasspotted in dupliate, suh design resulted in four measurements per gene for eahondition tested.3. Data PreparationPrior to performing the distint statistial tests, data were preproessed as outlinedin this paragraph. Bakground orreted raw measurements were log transformed.The error observed in miroarray data is a superposition of a multipliative and anadditive error [16℄. Log transforming the data ompensates for the multipliativeerror but at the expense of an inreased additive error at low expression levels.Beause observing a higher measurement error at low signal intensities is intuitivelyplausible and removal of multipliative errors is essential for most statistial tests,log transformation is advisable [1,11,13℄.Genes for whih at least one measurement ontained a zero value were treatedseparately. When dividing by zero values or taking the log of a zero value duringanalysis, zero values result in unde�ned values. When not treated seperately, theinformation about suh genes is lost. However, in a two-sample experiment zerovalues in one partiular ondition might orrespond to genes di�erentially swithedo�. In this partiular example all genes ontaining a zero value behaved inonsistentmeaning that the value of zero was dye-dependent rather than ondition-dependent[13℄. Genes, onsistently swithed on in one ondition and o� in the other were notdeteted.Data were normalized in order to remove onsistent soures of variation suhthat, for eah gene, the measured value reets the mere expression level as ausedby the ondition tested. These onsistent soures of variation harateristi forDNA arrays inlude array, dye, ondition and spot e�ets. Array e�ets refer to thedi�erenes in hybridization eÆieny between di�erent slides. Condition and dyee�ets reet di�erenes in respetively mRNA isolation and labeling eÆieniesbetween two distint samples while spot e�ets refer to the di�erene in amount ofDNA spotted on the array. A global normalization proedure was used [21℄. Globalnormalization assumes that only a small fration of the total number of genes onthe array alters its expression level and that symmetry exists in the number of genesthat is upregulated versus downregulated. Remark therefore that the assumptionof global normalization applies only to miroarrays that ontain a random set ofgenes and not to dediated arrays. Under the assumption of global normalizationthe average intensity of the test genes should be equal to the average intensitiesof the referene genes. Based on the hypothesis of global normalization, for thebulk of the genes the log2(test=referene) ratio should equal 0. Normalizing thedata onsists of �nding the right transformation fator that allows entering thelog2(test=referene) for the bulk of the genes around zero. Linear normalizationassumes a linear relationship between the measurements in both onditions (test
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4 Marhal, Engelen, De Brabanter, Aerts, Ayoubi, De Moor & Van Hummelenand referene) and uses a onstant transformation fator whih an either be themean or median of the log intensity ratios or a regression fator as determined bylinear regression.

Fig. 1. Illustration of the inuene of an intensity-dependent normalization. Panel A: representa-tion of the log-ratio M = log2(R=G) versus the mean log intensity A = (log2(R) + log2(G))=2.At low average intensities the ratio beomes negative indiating that the green dye is onsistentlymore intense as ompared to the intensity of the red dye. This phenomena is referred to as thenon-linear dye e�et. Either the sensitivity of the red signal is lower than the one of the green sig-nal or the basal noise level on the green signal is more pronouned. Solid line represent the Lowess�t with f value of 0.02. (R = red; G= green). Panel B: Representation of the ratioM = log2(R=G)versus the mean log intensity A = (log2(R) + log2(G))=2 after performing a normalization andlinearization based on the Lowess �t. Solid line represent the new Lowess �t [21℄ with f value of0.02 on the normalized data. (R = red; G= green).The atual dependeny between the measurements in both onditions on oneslide is illustrated in Fig. 1 using a plot of M (log(R=G) versus A (the averageexpression level in log sale), as suggested by Yang et al. [5℄. The relationshipbetween dyes learly depends on the measured intensity. These intensity-dependentdye e�ets result in non-linearities that are most pronouned at extreme intensities(either high or low). From Fig. 1 it is lear that in a ertain range of averageintensities A, the log ratio M approximates a ertain onstant level. In this range aonstant normalization fator an be used. However, as the average expression value(A) dereases, the log ratio (M) deviates from a onstant level and the use of anintensity-dependent resaling fator is more appropriate. Therefore a robust satterplot smoother that performs loally linear �ts, Lowess was used Yang et al. [5℄. Theresults of this �t an be used to simultaneously linearize (i.e. remove non-lineardye e�ets) and normalize the data (remove onsistent soures of variation due towithin slide dye and ondition e�ets)([21,5℄ (Fig. 1). Sine the M versus A plot wasused to �t the data, for eah gene novel normalized ratio estimates were alulated.From these normalized ratios, new values for the absolute expression levels an bederived. In our approah relative expression levels are approximated by the ratio
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Analysis of Two Sample Miroarray Data 5(log2(ratio) = log2(ondition1) � log2(ondition2) = log(�yi1) � log(�yi2)). Using aratio allows intrinsi ompensation for spot e�ets.Table 1. De�nitions of statistial terms.ResidualResiduals are the deviations of observed values from their estimated or �tted values. A resid-ual may be regarded as the observed error, in distintion to the atual unknown populationerror of the model.Additive errorThe absolute error on a measurement is independent of the measured expression level. Con-sequently, the relative error is inversely proportional to the measured intensity and is high formeasurements of low intensity. When repliate measurements are plotted against eah other,additive errors result in a onstant residual sattering.Multipliative errorThe absolute error on the measurement inreases with the measured intensity. The relativeerror is onstant but the variane between repliate measurements inreases with the meanexpression value. Multipliative errors ause signal-dependent variane of residuals.t-testA t-test an be de�ned as a hypothesis test that assumes that the observations are drawnat random from a normal population and that employs a Student t-distributed test statistifor on�dene interval estimation. The t-distribution desribes the distribution of a normalvariable, standardized with the sample variane s2 as opposed to the population variane�2. It is used for hypothesis testing of normally distributed variables when the populationvariane �2 is unknown, in whih ase the sample variane s2 is used as an estimator of �2.Paired t-testThe paired t-test is a speial ase of the two-sample t-tests of hypotheses that ours when theobservations on the two populations of interests are olleted in pairs (in a DNA miroarrayexperiment, measurements of the referene and test for a partiular gene, assessed on thesame array and the same spot are paired). The di�erene with an unpaired two-sample t-testis that both variables are presumed to be dependent. This translates into the inorporation ofthe ovariane between both variables in the test statisti. As a result, a positive orrelationwithin the pairs an ause the unpaired two-sample t-test to onsiderably understate thesigni�ane of the data if it is inorretly applied to paired samples.PowerThe power of a statistial test (omputed as 1-�, with � the probability of a type II error) isthe probability of rejeting the null hypothesis H0 when the alternative hypothesis is true. Itan be interpreted as the probability of orretly rejeting a false null hypothesis. Power is avery desriptive and onise measure of the sensitivity of a statistial test, i.e. the ability ofthe test to detet di�erenes.Corretion for multiple testingWhen onsidering a family of tests, the level of signi�ane and power are not the same asthose for an individual test. For instane, a signi�ane of � = 0.01 for individual gene ex-pression indiates a probability of 1% of �nding a ratio similar to the measured ratio underthe null hypothesis (no di�erential expression present). This means that for every 1000 genestested (a family of 1000 tests), 10 would be expeted to pass the test though not di�erentiallyexpressed. To limit this number of false positives in a multiple test, a orretion is needed(e.g. Bonferroni orretion).HeterosedastiityThe ondition of the error variane not being onstant over all ases.



June 14, 2002 19:12 WSPC/Instrutions for Typesetting Manusriptsrevised140602�naaldvi
6 Marhal, Engelen, De Brabanter, Aerts, Ayoubi, De Moor & Van Hummelen4. Identi�ation of di�erentially expressed genesWhen onsistent soures of variation have been removed, the di�erent ratio esti-mates of a partiular gene an be ombined to �nd out whether a gene is di�er-entially expressed. In this paragraph distint methods to perform this analysis areompared.4.1. Fold testThe fold test is a simple seletion proedure that makes use of an arbitrary hosenthreshold. For eah gene an average ratio (arithmeti mean of the logratio) isalulated based on the di�erent ratio estimates (logratio = log(�yi1) � log(�yi2)).Average ratios of whih the expression ratio exeeds a threshold (usually twofold)are retained. In this partiular dataset 110 genes exeeded a two fold threshold. Thefold test is based on the intuition that a larger observed fold hange an be moreon�dently interpreted as a stronger response to the environmental signal thansmaller observed hanges. Note that a fold test disards all information obtainedfrom repliates [1℄.4.2. Other Statistial testsA plethora of novel methods to identify di�erentially expressed genes in a sta-tistially more founded way have reently been proposed provided repliates areavailable (see Table 2). Distint lasses of models an be diserned, di�ering fromeah other in the test statisti used, in the way the null hypothesis is modeled andin their underlying assumptions. For the tehnial details for eah of these methodswe refer to the individual referenes (see Table 2). As examples, we used in thisstudy the method desribed by Baldi and Long [1℄ and the SAM method of Tusheret al. [20℄ beause to our opinion, though quite advaned, these methods are stillmost intuitive and straightforward to understand for non-expert users.4.2.1. t-testA t-test (see Table 1) is more appropriate to make statistial inferene about thedi�erential expression of a gene than a simple fold test sine it does not only takeinto aount how muh a gene is di�erentially expressed, but also the onsistenyof the individual measurements, used to assess the average di�erential expressionlevel. The non-paired t-test evaluates if the average expression level of a gene inthe test ondition is signi�antly di�erent from its average expression level in thereferene ondition. The H0 hypothesis states that the expression level of the testand referene are equal. The formula to ompute the test statisti is depited inTable 2. To alulate the within sample variane of a regular non-paired t-test,the four observations of the test are used to estimate the mean expression levelof the gene in the test ondition. In the same way the four measurements of the
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Table 2. Overview of reently desribed methods to determine di�erentially expressed genes aross two onditions.Method Assumptions Test statisti Error restritions DistributionH0: �1 = �2 Additional modi�-ationsIndependentSamplest-test for equal-ity of means a Observations are independentObservations for eah group area sample from a population witha normal distributionUnequal sample varianeUnequal sample size ti = �yi1��yi2r s2i1n1 + s2i2n2df = ( s2i1n1 + s2i2n2 )2si1n1 2n1�1+ si2n2 2n2�1 Errors normally dis-tributed Parametrized :Studentt-distribution Emperial Bayesianestimate of varianePaired Samplest-test b Eah pair of measurements is in-dependent of other pairsDi�erenes are from a normaldistributionUnequal sample varianeEqual sample sizen1 = n2 = n ti = �yi1��yi2r s2i1+s2i2�2ov(yi1;yi2)ndf = n� 1 Errors normally dis-tributed Parametrized :Studentt-distributionWeigthed leastsquares d Unequal sample varianeUnequal sample size ti = �yi1��yi2r s2i1n1 �n1�1n1 + s2i2n2 �n2�1n2 Unequal error vari-anes aeptable Parametrized:Standard nor-mal distribution Weighted leastsquaresMixture modelapproah d Unequal sample varianeUnequal sample size ti = �yi1��yi2r s2i1n1 + s2i2n2 Errors equal variane(iid) and symmetri-ally distributed test statistiused in a likeli-hood ratio test distributionsestimated by Normalmixture modelsSAM e Equal sample variane: use of`pooled' variane s2ipUnequal sample size ti = �yi1��yi2s0+sipq 1n1+ 1n2 Errors equal variane(iid) No expliit H0distributionbut use of orderstatistis Addition of s0 to en-sure that the distri-bution of ti is inde-pendent of the level ofgene expressionNote: Eah of the methods uses variations of a mean and variane normalized test statisti ti. The methods di�er from eah other in the way theorresponding signi�ane level is alulated. A �rst lass of methods makes use of simple t-test statisti. For eah gene i the test statisti ti is alulated.�yi1 : average expression level of the n1 repliates of gene i in the �rst ondition, si1: within variane of this group of repliates, �yi2, si2: similar but for theseond ondition. Based on the alulated ti value, a preset signi�ane level and the degrees of freedom the orresponding p-value is alulated. The p-valueexpresses the probability of �nding a ertain value of the test statistis ti by oinidene assuming that both genes were not di�erentially expressed (H0hypothesis). As a H0 distribution, a parametrized (Student t-distribution) is used for small sample sizes. Due to the small sample size and the orrespondinglow degrees of freedom, t-tests have a low power. Non-parametri alternatives to the t-test and the paired t-test respetively are the Wiloxon Rank Sumtest and the Wiloxon Signed rank test. For a suÆiently large sample size, the test statisti ti used by Thomas et al. [19℄ and that of the regular t-testmay be onsidered equal. For small sample sizes Thomas et al. [19℄ make use of the maximum likelihood estimator of the variane. The advantage of themodel of Thomas et al. [19℄ is that it does not assume a onstant variane of the error term. However, to alulate their signi�ane, Thomas et al. [19℄make use of a normal distribution for H0, whih might be too strong an assumption viewing the small sample size. The seond lass of models estimates thedistribution of H0 diretly by permutation analysis (a omparable method is used by Kerr et al. [11℄). The mixed model desribed by Pan et al. [14℄ makeuse of omplex estimation proedures to determine the distribution of H0 while the method of Tusher et al. [20℄ uses order statistis. In ontrast to theother approahes, the SAM method assumes that the varianes are equally distributed and therefore uses the pooled variane s2ip = (n1�1)s2i1+(n2�1)s2i2n1+n2�2 asan estimator of �2i1 = �2i2 = �2i . a(Baldi and Long, 2001), b(Dudoit, Yang et al., 2000), (Thomas, Olson et al., 2001), d(Pan, 2001), e(Tusher, Tibshiraniet al., 2001)
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8 Marhal, Engelen, De Brabanter, Aerts, Ayoubi, De Moor & Van Hummelenreferene are onsidered as a single group. The standard deviations (si1, si2) areomputed based on the deviation of the di�erent measurements of a group fromtheir respetive group means (�yi1, �yi2) (Table 2). Of ourse when the within varianeis alulated in suh a way it intrinsially ontains the onsistent variations due toarray and spot e�ets (the absolute expression values instead of the ratios are usedto alulate an estimate of the average di�erential expression level). This probleman be overome by using a paired t-test. Indeed, in a DNA array the refereneand test measurements for the same gene, assessed on the same array and thesame spot an be treated as paired observations. In Table 2 is outlined how apaired t-test (Table 1) for DNAs is alulated. For omputation of the variane,a pair of observations is onsidered as a new variable (log(�yi1) � log(�yi2))). Thewithin group variation, as alulated by a paired t-test evaluates the deviation ofthis new variable from the mean of that variable (i.e. the variation between thelog(�yi1) � log(�yi2))). As suh a paired t-test, in ontrast to a regular non-pairedt-test intrinsially ompensates for the variation over spots and arrays. The lowerwithin group variation inreases the power (Table 1) of a paired t-test as omparedto a regular t-test. Note that when performed on the log transformed data, thet-test approah an be onsidered as the ounterpart of the fold test (alulatinglog(�yi1) � log(�yi2)) = log(�yi1=�yi2)). The theoretial advantage of a (paired) t-testis that smaller fold hanges are onsidered signi�ant for genes whose expressionlevels are measured with great auray (high onsisteny) and large fold hangesare onsidered non-signi�ant if expression levels were not measured aurately(low onsisteny). Using the paired t-test of Baldi and Long [1℄ on our datasetresulted in 186 genes with an individual p-value lower than 0.01 (106 genes with ap-value lower than 0.005). Usually a t-test is ombined with a orretion for multipletesting (see Table 1). The implementation of Baldi and Long (Cyber-T) uses aBonferroni orretion [1℄. Only 3 genes in our dataset passed the signi�ane testafter orretion for multiple testing (assuming an experiment wide false positive rateof 0.25). Therefore, the single step adjusted p-values, as implemented in the Cyber-Tsoftware are seemingly too onservative, dereasing the power of the statistial test(ability to detet real positives). Moreover, the hoie of the Bonferroni orretionfator is quite arbitrary. To handle these pitfalls, other orretions for multipletesting have been proposed reently [5℄. Long et al. [12℄ provide other extensionsto their implementation of the t-test suh as the Bayesian t-test, a methodologydeveloped to ope with the low number of repliates. For more information on thistopi we refer to Long et al. [12℄.4.2.2. SAMSAM (Signi�ane Analysis of Miroarrays) is another method for the analysis ofpaired or unpaired blak/white experiments [20℄. Instead of alulating a t(i)-value,SAM alulates for eah gene a modi�ed t(i) value, alled relative di�erene andreferred to as d(i) in the original artile (see Table 2). The di�erene between t(i)
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Analysis of Two Sample Miroarray Data 9and d(i) alulated by SAM is the onstant term s0, used to ompensate for thedependeny of the distribution of d(i) on the measured expression level. After al-ulating for eah gene the orresponding d(i) value, genes are ranked aording totheir d(i) value. The higher the d(i) value (in absolute value), the more likely thatthe gene will be di�erentially expressed. Instead of alulating a p-value using astudent t-distribution, genes alled di�erentially expressed are identi�ed by per-forming a permutation analysis. New random datasets are generated by permutingthe original data. In suh permutated datasets none of the genes is di�erentiallyexpressed. The d(i) values in these randomized datasets are alulated, ranked andsubsequently used to infer the expeted di�erenes i.e. the d(i) value that an beexpeted if a gene is not di�erentially expressed. By using a satterplot (Fig. 2),ranked d(i) values of the experimental dataset are ompared to ranked expetedd(i) values.

Fig. 2. Result of a SAM analysis on the preproessed dataset (see Setion 3). The followingparameter settings were used: paired test, permutation analysis: 1000 iterations, delta value =1.2, threshold = 0.The delta value, a user-spei�ed parameter determines the number of signif-iantly expressed genes, it expresses how muh the measured d(i) value shouldexeed the expeted d(i) value in order to onsider a gene signi�antly expressed(delta measured as a displaement of the d(i) value from the d(i) = dExpeted(i)line). The number of false positives an be estimated as the number of genes presentin the permuted dataset for whih the d(i) value exeeds the lowest d(i) value thatwas onsidered signi�ant based on a given setting of the delta slider. Permuta-tion analysis overomes the need of a high number of repliates and is used as an
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10 Marhal, Engelen, De Brabanter, Aerts, Ayoubi, De Moor & Van Hummelenalternative to orretion for multiple testing. Using a paired test and a value forthe delta slider of 0.93, 106 genes were onsidered as di�erentially expressed with amedian number of false positives of 7. The setting of the delta slider allows hoosinga tradeo� between the number of false positives (type I error) and the number offalse negatives (type II error). The lower the number of false positives, the morestringent the test and the lower the number of genes withheld as signi�ant. TheSAM software outputs a listing of the number of genes withheld and the possiblenumber of false positives for eah di�erent value of the deltaslider.4.2.3. ANOVA-based bootstrappingAnother method used in this study to identify di�erentially expressed genes is basedon the use of a bootstrap on�dene intervals. Bootstrapping allows reating on-�dene intervals based on an estimate of the experimental noise distribution ofthe dataset. This experimental noise an be estimated by using an ANOVA-basedapproah [10℄. ANOVA an be viewed as a speial ase of multiple linear regres-sion where the explanatory variables are entirely qualitative. ANOVA models themeasured expression level of eah gene as a linear ombination of the explanatoryvariables that reet, in the ontext of this study, the major soures of variation ina miroarray experiment. Several explanatory variables representing the ondition,dye and array e�ets and ombinations (2, 3 and 4 level ombinations) of thesee�ets are taken into aount in the models. One of the ombined e�ets, the Gene-Condition (GC) e�et, reets the expression of a gene merely depending on thetested ondition (i.e. the ondition-spei� expression). Sine this is the e�et inwhih biologists are interested it is referred to as the fator of interest. Similarly thedi�erene between the GC e�ets of two onditions reets the di�erential expres-sion and is alled the ontrast of interest. Of the other ombined e�ets only thosehaving a physial meaning in the proess to be modeled are retained. Reliable useof an ANOVA model therefore requires a good insight into this proess. The resid-uals of the �t an be onsidered as estimates of the experimental noise, likewise the�tted values are estimates of the measurement values devoid of the noise. Remarkalso that ANOVA an not only, estimate the experimental noise in the dataset butalso inherently performs a multidimensional linear data normalization.The use of ANOVA requires two major assumptions to be satis�ed. At �rstthe data should adequately be desribed by the linear ANOVA model. Seondly,observations should be normally distributed with onstant within group varianesequal for all groups. If both these assumptions are satis�ed, the major advantage ofusing ANOVA for normalization onsists of its ability to assess the di�erent souresof variation aross the entire experiment (i.e. the entire set of arrays) instead oftreating eah slide separately. In ontrast to the slide by slide approah, all mea-surements are ombined during statistial inferene. Satisfying both requirements,mentioned above, results in the model errors (as estimated by the residuals of the�t) being independently and normally distributed random variables with zero mean
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Analysis of Two Sample Miroarray Data 11and onstant variane. The behavior of the residuals an be observed by visual in-spetion of the residual plots (Fig. 3). If the data an not be �tted by a linearmodel (not satisfying the �rst assumption), residual plots show a non-linear be-havior whih an best be observed by plotting the residuals against the estimatedvalues for the individual ombinations of the major e�ets (i.e. dye, array and on-dition e�ets). Not satisfying the seond assumption results in heterosedastiity(Table 1), indiated by an observed wedge-shaped trend in the residual plot. Whenboth assumptions are satis�ed and the residual distribution shows only slight de-viations from normality (so that the atual errors, estimated by the residuals anbe assumed to be normally distributed) signi�antly di�erentially expressed genesan be identi�ed by onstruting on�dene intervals on the di�erene in GC e�et.These on�dene intervals are then based on normal assumptions. If the distribu-tion of the residuals shows serious deviations from normality, on�dene intervalonstrution an still be done, but bootstrap analysis should be used as an alterna-tive. In bootstrap analysis, similar to the permutation analysis of SAM, no expliitassumption on the distribution of the errors is made, but on�dene intervals areestimated based on novel in silio generated datasets. The only assumption is thatthe errors are identially and independently distributed i.e. assuming a onstanterror variane (iid). Fitting the ANOVA model results in a set of residuals and es-timated values ŷ. By adding a residual, randomly sampled-with-replaement fromthe available set of residuals to the estimated expression values, thousands of novelbootstrapped datasets an be generated. In eah of the novel dataset the di�erenein GC e�et between two onditions is alulated, as a measure for the di�erentialexpression. Based on these thousands of estimates of the di�erene in GC e�et, abootstrap on�dene interval an be alulated [9℄.Di�erent ANOVA models to desribe miroarray experiments, originally pro-posed by Kerr et al. were tested on our dataset. Eah of these di�ers in the numberof additional ombined e�ets inluded [11℄. The model that performed best on-sisted of an adaptation on our part of the original models (Table 3). The modelinludes array, dye, ondition and gene e�ets. Combined e�ets inlude GC e�etand spot e�ets. Spot e�ets are modeled by assuming a relationship between spotson the same array and a relationship between all left and right spots.As mentioned in the setion data preparation, miroarray data show a strongnon-linear behavior. This behavior prohibits readily using linear ANOVA modelson non-linearized data. The inuene of using a linear model on non-linearizedmiroarray data is illustrated by Table 3A and Fig. 3A. In the ANOVA table rep-resented in Table 3, the SS-value desribes for eah e�et its ontribution to theglobal variation in the experiment. Using our ANOVA model, without prior lin-earization resulted in residuals being far from normally distributed and showing anapparent slight heterosedastiity (a non-onstant variane of the residuals) at lowexpression levels (data not shown). By plotting the residuals against the estimatedvalues for the individual ombinations of major e�ets (see Fig. 3A), it was learthat the observed heterosedastiity did not only result from non-onstant variane
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12 Marhal, Engelen, De Brabanter, Aerts, Ayoubi, De Moor & Van HummelenTable 3. ANOVA Results of the ANOVA model before and after linearization by LowessSoure SS df MS SS df MSwithout Lowess normalization Lowess normalizationG-e�ets 1333176.7 3784 35.2 1333176.7 3784 35.2C-e�ets 4536.6 1 4536.6 0 1 0A-e�ets 22432.4 1 22432.4 22432.4 1 22432.4D-e�ets 4822.5 1 4822.5 0 1 0AG-e�ets 9052.6 3784 2.4 9052.6 3784 2.4RG-e�ets 2164 3785 0.6 2164 3785 0.6GC-e�ets 1313.6 3784 0.3 1239.8 3784 0.3Error 7993.1 15139 0.3 5656 15139 0.4Correted Total 185492.2 30279 6.1 173722.2 30279 5.7ANOVA model: Iijklm = �+Gi+Cj +Ak+Dl+Rm(i)+(AG)ki+(GC)ij +�ijklm�: overall mean of the expression levels, A: array e�et, D: dye e�et, G: gene e�et,C: ondition e�et, GC: e�et of interest, R: repliate e�et, AG: ombined e�etrepresenting a spot e�et, i: number of genes, j: number of onditions, k: number ofarrays, l: number of dies, m: number of repliates. ANOVA tables: represent for eahe�et in the orresponding ANOVA model its ontribution to the total variane (SS= sum of squares error). The residual SS, represented by Error is the variation in thedataset that ould not be explained by any of the e�ets. The total variation in thedataset represented by Correted Total. Df: degree of freedom, MS: mean square error.Left part: Data were partially preproessed as in Setion 3 but no normalization byLowess was performed. Right Part: Data were ompletely preproessed as in Setion 3.in the dataset (presene of additive error in the low expression range) but that non-linear e�ets ourred in the data. To minimize the inuene of the non-linearity,non-linear dye e�ets were removed by performing a Lowess �t prior to ANOVA.The results of the ANOVA model on Lowess modi�ed data are depited in (Ta-ble. 3, Panel B). The e�et of the Lowess normalization is reeted by the zeroontribution of the dye and ondition e�ets in the ANOVA table. When residualswere plotted as shown in Fig. 3B for eah array and dye separately after Lowess�t it is lear that non-linear tendenies have suÆiently been removed. It shouldbe noted, however, that this was most often not the ase. We regularly observed inother datasets that non-linearities not only originated from non-linear dye e�etsbut also, though less pronouned, from non-linear array and/or ondition e�etsthat either ompensated or exaerbated the orresponding dye e�ets. In suh asethe use of ANOVA to estimate the error is not advisable. Beause in this datasetonly a slight heterosedastiity was observed, the studentized residuals of the modelwere used for bootstrap analysis. As suh we ould identify 163 genes as potentiallydi�erentially expressed based on a 95 % and 71 genes based on a 99 % bootstrapon�dene interval. Remark that by performing a Lowess normalization prior to ap-plying ANOVA, we only use the ANOVA model to estimate the experimental noiseand do not make use of its ability to normalize data. Seondly, for the experimentaldesign used in our study the di�erene in GC e�et, after performing a Lowess �tapproximates the log of the ratio. Therefore, as applied in this study, ANOVA is
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Analysis of Two Sample Miroarray Data 13used as an alternative method to estimate statistially di�erentially expressed genesthat are approximated by their log ratio.

Fig. 3. Inuene of non-linear e�ets in the data on the residual plots of the ANOVA model. PanelA: Residuals for the appliation of ANOVA model on the partially preproessed data plottedseparately for eah array-dye ombination. Data were log transformed, genes ontaining at least1 zero value were removed. Panel B: Residuals for the appliation of ANOVA model on the datapreproessed data as outlined in setion 3, plotted separately for eah array-dye ombination. Anadditional pretransformation by Lowess allowed removal of strong non-linear dye e�ets. A: array,R:replia, D:dye, C: ondition5. Comparison of the di�erent methods testedThe output of the fold test, the t-test, SAM and the ANOVA-bootstrap methodwere ompared. All methods were performed on the data preproessed as outlinedin setion 3. In the disussion a distintion will be made between the models thatmake an expliit assumption on the distribution of the H0 hypothesis (t-test) andthose that make use of bootstrap-based proedures (ANOVA, SAM). Sine thenumber of genes alled signi�antly di�erentially expressed depends on the spei�parameter setting of eah method (p-value hosen as threshold, deltaslider, ANOVAsigni�ane level), parameter settings were hosen suh that eah method preditedapproximately the same number of genes as being signi�ant (Table 4). The t-testas desribed by Baldi and Long [1℄ was used without Bonferroni orretion i.e. thealulated p-values were used to rank the genes. Genes behaving similarly underthe di�erent methods were grouped. Of the 3785 genes, 246 genes were deteted byat least one of the methods tested. Results are summarized in Table 4.In all statistial tests the ratio was used as an estimator of the di�erentialexpression (in ANOVA di�erential expression is estimated as a di�erene in GCe�ets, whih is basially a resaled ratio). Eah gene was haraterized by itsaverage expression ratio and its p-value (as determined by the t-test). A lowerp-value reets a low variation between the repliate measurements for the ratio
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14 Marhal, Engelen, De Brabanter, Aerts, Ayoubi, De Moor & Van HummelenTable 4. Overview of the di�erent methods testedto detet statistially di�erentially expressed genes.test number of genes alled signi�ant1. ANOVA 95 1632. ANOVA 99 993. SAM 1064. t-test 1065. fold test 110Parameters for eah method were hosen as suhthat eah method withheld approximately the samenumber of genes.estimate of that gene. Therefore the p-value an be onsidered as a measure of theonsisteny of a partiular measurement. This means that the better the spei�harateristis of genes belonging to a group (higher di�erential expression leveland more onsistent measurements), the more reliable the predition on the geneswithin that group were. Comparing the gene harateristis of the di�erent groupsallowed us to make onlusions on the performane of the di�erent methods tested.Only 8 genes were deteted by all methods (see Fig. 4, group 1) pointing towardsa rather low degree of agreement between the di�erent methods in the preditionof the di�erentially expressed genes. Based on the results in Table 5 the followingonlusions about the performane of the di�erent methods ould be made:Genes that were alled di�erentially expressed merely based on a fold testshowed a huge variation aross the di�erent repliate measurements. As an beseen in Table 5, in group 8 and 9 the high p-values reeted a low onsisteny.These genes would have been rejeted by tests that take into aount expliitly thewithin group variation (suh as a t-test or SAM). Indeed, the hoie of a onstantarbitrary threshold impliitly assumes that the variane among repliates is thesame for every gene. This is, however, not the ase sine the variation on the ratio,as estimator of the di�erential expression depends on the variation of the absolutesignals that onstitute the fators of the ratio. Low absolute expression values inone of the two hannels (test or referene) results in unstable, often arti�ially highratios. As suh a �xed threshold of 2 gave rise to a high number of false positives es-peially in the low expression range where the signal to noise ratio is low. However,as the intensities in both the hannels inrease, the ratios beome theoretially amore reliable estimate of the di�erential expression. In this region a �xed thresholdof 2 might have been too stringent. Di�erent variants of the fold test have beendesribed hitherto that are based on additional series of �ltering steps e.g. a �lter-ing step removing all genes below a ertain signal to noise level. Though likely togive better results than the fold test as desribed here, these fold tests make use ofarbitrarily de�ned thresholds and are not statistially founded.From this perspetive the t-test is a better alternative to the fold test. It does notonly fous on the extent to whih a gene is di�erentially expressed but also takes
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Fig. 4. Detailed representation of the genes orresponding to the groups 1, 9, 10, and 11. X-axis: average gene expression level in log sale. Y-axis: log of the ratio. Blak dots: normalizedexpression level of all 3785 genes. Dots olored otherwise indiate the expression levels of thegenes showing the pro�le of the orresponding groups. Eah gene is represented by its 4 repliatemeasurements. For genes of whih the expression measurements are behaving onsistently, the4 repliate measurements are represented by spots loated on the same horizontal level in theplots (i.e. having a similar ratio). Cyaan: expression levels as measured on the �rst array, red:expression levels as measured on the seond array. +: right spots; *: left spots. Dashed linesindiate the 1.5 fold and 2 fold over- and underexpression levels respetively. Group 1: genesdeteted by all methods. Group 10: genes only deteted by the t-test. These measurements werevery onsistent but probably too lose to zero (not di�erentially expressed) to be biologiallyrelevant. Group 11: genes only deteted by t-test and SAM: measurements were onsistent andsuÆiently di�erent from zero (not di�erentially expressed) to be deteted by bootstrap-basedmethod suh as SAM. Group 9: genes deteted by the fold test and ANOVA-based methods only.Due to their high average expression value these genes were onsidered as being signi�ant butthe onsisteny of these genes was remarkably low. Most of the datapoints were loated in theregion of low average intensity. In this range the ratio beomes a poor estimator of the di�erentialexpression. Due to the heterosedastiity in the data, the bootstrap-based on�dene intervalssystematially underestimated the variation at low average intensity levels and failed to rejetthese potentially false positives.into aount, the variation aross the di�erent measurements used to determinethis average di�erential expression level. Indeed, genes that are retained by thet-test will per de�nition behave onsistently (only genes with a p-value < 0.005



June 14, 2002 19:12 WSPC/Instrutions for Typesetting Manusriptsrevised140602�naaldvi
16 Marhal, Engelen, De Brabanter, Aerts, Ayoubi, De Moor & Van Hummelenare withheld in our tests). However, what is often observed is that the lower thesignal, the more onsistent genes tend to behave. This ould be observed in ourdataset in Fig. 4 group 10 that represent all genes retrieved by the t-test only.Although behaving onsistently, these genes were almost not di�erentially expressed(relative expression value in log sale lose to zero). The observed onsisteny mighthave been merely oinidene. These genes were indeed rejeted by the resampling-based methods (SAM and ANOVA followed by bootstrap) and are probably froma biologial point of view not really relevant (Table 5 luster 10). Therefore usinga t-test alone will probably result in the retrieval of onsistently behaving but notdi�erentially expressed genes. On the other hand, the t-test apparently missed anumber of real di�erentially expressed genes in our data set. Indeed, from Table 5,group 3 and group 4 ontained genes that were rejeted based on the t-test but notby the resampling-based methods. These genes exeeded a 2 fold expression level. Itis, however, not straightforward to judge the relevane of these genes. Although notvery onsistent, their repliate measurements had the same tendeny either beingonsiderably over- or underexpressed. Due to the restrited number of availablemeasurements, the power of the t-test was probably too low to retain these genes. Inontrast, the SAM method is less stringent beause it makes no expliit assumptionson the H0 distribution. Therefore, these genes though missed by the t-test, are stillonsidered signi�ant by SAM. Another interesting set of genes were those detetedby both a t-test and resampling-based approahes. These genes were grouped ingroups 11 and 5 and were only marginally but reliably down(up)regulated (Table 5).These genes probably undergo subtle hanges in expression level, that are justexeeding what an be expeted by oinidene (in ontrast to the genes detetedby the t-test only) and are probably from biologial point of view most interesting.The behavior of the ANOVA model is illustrated by Fig. 4, depiting group9, (group 7 and group 8 su�er from the same problem but are not shown). TheANOVA-based bootstrapping approah assumes a onstant on�dene interval iden-tial for all genes. The size of the on�dene interval is estimated based on a �xedresidual distribution of the model �t on the omplete dataset. As mentioned pre-viously, if either one of the hannels measures a signal lose to zero (reeted bya low average expression level) the ratio beomes an unreliable estimator of thedi�erential expression. Indeed, in our data set, gene expression values lose to zeroin either one of the hannels often resulted in relative high but inonsistent ex-pression ratios (p-values of the t-test range from 0.04-0.55). For these genes theonstant on�dene interval was a serious underestimation of the variation on thesemeasurements. Therefore groups 7, 8 and 9 (Table 5) most likely ontained onlyfalse positives. On the other hand, for genes that were only slightly di�erentiallyexpressed, the onstant on�dene intervals based on the onstant residual varianewere probably too stringent to retain these genes. This resulted in a failure of theANOVA-based bootstrapping test to detet genes with more subtle alteration inexpression level suh as those present in luster 11. For all these reasons, preditions
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Analysis of Two Sample Miroarray Data 17made by ANOVA-bootstrap-based bootstrapping therefore were most unreliable.Finally, in group 6 and 12, genes were grouped that were only deteted by SAM(Table 5). These genes all behaved rather onsistent (64 % of the genes have p-value lower than 0.01, Table 5) and deserve further investigation. A more detaileddesription on the biologial relevane of the genes retrieved by our analysis in theproess studied will be desribed elsewhere.6. ConlusionsIn this review, di�erent approahes to identify di�erentially expressed genes wereompared. Prior to testing eah method, data were preproessed. Ratios were usedas estimates of the rate to whih genes are di�erentially expressed. We were in-terested in �nding out whih of the methods tested performed best when only arestrited number of repliates was available sine this is the situation, most oftenenountered in real life. It should be noted that beause of the spei�ities of DNAarrays (DNA inherent soures of variation, spei� preproessing proedures), theonlusions resulting from this study an not readily be extrapolated to the analy-sis of other array types. From our observations the following onlusions ould bemade. Eah of the methods di�ers in the required assumptions on the variane ofthe data and on the distribution of the residuals under the H0 hypothesis. There-fore, the method for whih the underlying assumptions are best satis�ed will givethe most reliable results, i.e. as it is often the ase with statistial methods thereliability of the methods is dataset-dependent. The t-test ould ertainly be usedas a more statistially founded alternative of the fold test. However, it had the ten-deny to retrieve many onsistently behaving ratio estimates too lose to 0 to bealled di�erentially expressed. Moreover, the t-test has a rather low power beauseof the restrited number of repliates. Of all methods tested on our dataset, SAMlearly outperformed the other methods beause the underlying assumptions wereprobably best satis�ed.The ANOVA-based bootstrap method learly underperformed in identyfying dif-ferentially expressed genes. Nevertheless, from a theoretial point of view, ANOVAis most powerful to analyze miroarray data. The simultaneous use of all mea-surements, not only to estimate the experimental noise, but also to normalize thedata is a major advantage. Moreover, ANOVA an be extended to more omplexdesigns and an take into aount the spei�ations of eah experimental setup.However, the non-linear tendenies in the data prohibit the use of ANOVA fordata normalization. This problem ould be partially alleviated by performing aLowess normalization prior to the appliation of the ANOVA model. Even usingit for measurement error estimation and bootstrap analysis only, ANOVA seemedto fail. The assumption of a onstant residual variane is obviously an oversimpli-�ation viewing the non-linear trends in the data and the additivity of the errorin the low expression range. At this stage this oversimpli�ation renders the useof bootstrapping for reliable identi�ation of di�erentially expressed genes impos-
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Table 5. Overview of the performane of the di�erent methods#genes #under- range #over- range range fold ANOVA ANOVA SAM t-testexpressed expressed p-value test 99% 95%reliable genesgroup 1 8 1 > -2 7 >2 <0.005 + + + + +group 2 3 0 > -2 3 >2 <0.005 + + - + +group 5 6 1 (-1.71) 5 (1.93;1.94) <0.005 - - - + +group 11 36 25 (-1.85;-1.43) 11 (1.37;1.80) <0.005 - - - + +genes of mediore reliabilitygroup 3 18 10 >-2 8 >2 0.005-0.01: 4 + + + + -0.01-0.05: 13> 0.05:1group 4 3 1 >-2 2 >2 0.005-0.01: / + + - + -0.01-0.05: 3> 0.05:/group 6 6 4 (-1.97;-1.71) 2 (1.82;1.85) 0.005-0.01: 3 - + - + -0.01-0.05: 3> 0.05: /group 12 28 4 (-1.76;-1.60) 24 (1.50;1.72) 0.005-0.01: 19 - - - + -0.01-0.05: 7> 0.05:/genes of low reliabilitygroup 10 51 19 (-1.51;-1.09) 32 (1.14;1.38) <0.005 - - - - +group 7 41 21 (-0.50;-0.55) 20 (1.81;1.97) 0.005-0.01:/ - + - - -0.01-0.05: 5>0.05:36group 8 33 22 >-2 11 >2 0.005-0.01:/ + + - - -0.01-0.05: 2> 0.05:31group 9 45 30 >-2 15 >2 0.005-0.01:/ + + + - -0.01-0.05: 1> 0.05:44Note: Genes were grouped as follows: a binary pro�le was assigned to eah gene indiating whether the gene was deteted (+) or not (-) bythe methods tested and genes with the same binary pro�le were grouped. Eah group of genes is haraterized by a p-value range, reetingthe onsisteny of its repliates and the range of over- or underexpression. Based on these harateristis the performane of the distintmethods was evaluated. # genes: number of genes within a group, #number overexpressed: number of overexpressed genes within a group,#number underexpressed: number of underexpressed genes within a group, range: range of di�erential expression: determined as the maximaland minimal levels of over(under)expression of the individual genes belonging to that group, levels of over(under) expression are expressed asfold overexpression (positive values) or fold underexpression (negative values). range p-value: determined as the maximal and minimal p-valuesof the individual genes belonging to that group.
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Analysis of Two Sample Miroarray Data 19sible. Performing di�erent transformations prior to ANOVA an help to alleviatethe problem of heterosedastiity. In order to allow bootstrap analysis despite theunequal variane in residuals, Kerr et al. proposed an adapted bootstrap proedure[8℄. Instead of hoosing for all genes a onstant error, the residual was onsideredeither gene-spei� or at least intensity-spei�. This approah, however, does notwork when heterosedastiity is due to a hyperposition of non-linear trends in resid-uals for separate ombinations of major e�ets (Fig A. 3, e.g. all genes measuredwith dye 1 and array2), as was often observed in our test examples and as has sim-ilarly been notied for other datasets [8℄. Currently we are investigating di�erentpossibilities to improve the ANOVA-based tehnique. Beause of the overall lowagreement between the di�erent methods on the preditions, ombining the predi-tions made by the di�erent methods gives the most reliable results and - at leastpartly - overomes the spei� problems of eah method.7. Software usedA userfriendly publily available implementation of a t-test, t-test adapted forpaired samples, t-test for samples with 0-level in one hannel and Bayesiant-test with orretion for multiple testing is available in Cyber-T softwarehttp://genomis.biohem.ui.edu/genex/ybert/ [1℄.The SAM software was downloadedfrom http://www-stat.stanford.edu/�tibs/SAM/ and used as a plug in in Exel[20℄. The ANOVA models were implemented in Matlab 6.1 (the MathWork In.,Natik, Mass) and are available on request (kathleen.marhal�esat.kuleuven.a.be),httpwww.esat.kuleuven.a.be/�dna/BioI/.AknowledgmentsK. Marhal is a post-dotoral researher of the FWO; K. Engelen is researh assis-tant of the IWT; Prof. B. De Moor is professor at the KULeuven, P. Van Hummelenis researh manager of the miroarray faility at VIB. This work is partially sup-ported by: 1. IWT projet: STWW-Genprom 980396; 2. Researh Counil KULeu-ven: GOA Me�sto-666; 3. FWO projets: G.0115.01; 4. DWTC (IUAP IV-02 (1996-2001) and IUAP V-22 (2002-2006); 5.IDO (IOTA Onology, Geneti networks); 6.Flanders Interuniversity Institute of Biotehnology (VIB). The authors thank K.Coddens, R. Maes and K. Seeuws from the VIB-miroarray faility for their exel-lent tehnial help and F. De Smet and G. Thijs for the useful remarks.Referenes[1℄ Baldi P. and Long A. D., A Bayesian framework for the analysis of miroarray expres-sion data: regularized t -test and statistial inferenes of gene hanges, Bioinformatis17 (2001) pp. 509-519.[2℄ Blohm D. H. and Guiseppi-Elie A., New developments in miroarray tehnology, CurrOpin Biotehnol. 12 (2001) pp. 41-47.
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