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Abstract 
In this paper, we discuss datasets that are being generated by microarray technology, which makes it possible to 
measure in parallel the activity or expression of thousands of genes simultaneously. We discuss the basics of the 
technology, how to preprocess the data, and how classical and newly developed algorithms can be used to generate 
insight in the biological processes that have generated the data. Algorithms we discuss are Principal Component 
Analysis, clustering techniques such as hierarchical clustering and Adaptive Quality Based Clustering and 
statistical sampling methods, such as Monte Carlo Markov Chains and Gibbs sampling.  We illustrate these 
algorithms with several real-life cases from diagnostics and class discovery in leukemia, functional genomics 
research on the mitotic cell cycle of yeast, and motif detection in Arabidopsis thaliana using DNA background 
models. We also discuss some bioinformatics software platforms. In the final part of the manuscript, we present 
some future perspectives on the development of bioinformatics, including some visionary discussions on 
technology, algorithms, systems biology and computational biomedicine.   
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1. Introduction  
�In vivo veritas� 

 
This year 2003 marks the 50th anniversary of the discovery of the double helix structure of DNA, the 
basic building structure of all living organisms, by Crick and Watson, in the 1 page landmark paper 
[Watson, 1953]3. Since then, over the past 50 years, the evolution of biotechnology has been 
remarkable and expontential, not in the least because of the recent merger of biology with advanced 
computation, into what is nowadays called bioinformatics.  Computer science and mathematical 
engineering on the one hand, and biology on the other, are, at first blush, an unlikely pairing: abstract, 
symbolic-numeric and/or mathematical computation, versus wet, evolving living organisms. But in the 
near future,  the relationship between biology and computer science and mathematics will be seen to be 
as deep and abiding as the relationship between mathematics and physics (see e.g. [Lesk, 2000]).  
Remarkably enough, in the history of science, there have been many, �almost accidental�, encounters 
between biology and mathematics: The classic studies of inheritance, reported in an 1866 paper,  by  
Gregor Mendel�s [Henig, 2000], were an exercise, not in biology, but  in statistical inference. They laid 
the foundation of contemporary genetics. Other lesser known examples are Shannon, with his 1940 
PhD Thesis entitled �An Algebra for Theoretical Genetics� or, Alan Turing, who in the fifties described 
the morphogenesis of embryos in their early stage using convection-diffusion equations.  
While the main objective of this paper is to elucidate the way in which biotechnology has boomed 
because of mathematics and information technology, we, as systems and control engineers, might also 
learn from biological systems, which themselves are highly evolved, extremely robust and amazingly 
effective information processing systems. Biological systems continue to produce potent methapors for 
intelligent systems: Artificial neural networks (modeled on biological neurons) have become highly 
competitive machine-learning tools. Genetic algorithms mimic the Darwinian optimization program of 
natural selection (�survival-of-the-fittest�). Artificial immune systems have been devised to detect 
computer viruses. DNA computing experiments (i.e. calculating by exploiting the complementarity 
properties of DNA molecules, using chemical concentrations as state variables) have solved NP-hard 
problems in linear time, and under certain (plausible) conditions can be shown to be Turing complete 
(see e.g. [Kari, 1997]).    
Biology itself is undergoing a revolutionary change that would be impossible without advanced 
computation. New data generation technologies have brought a �high-throughput� era to biology.  DNA 
sequencing technologies were the first to produce large amounts of data. In the last 10 years or so, 
many genomes have been sequenced, such as (non-exhaustively) several tens of viruses 4, unicellular 
organisms including bacteria (e.g. Haemophilus influenzae), yeast (Saccharomyces cerevisae), plants 
such as Arabidopsis thaliana (Nature, 14 December 2000), rice5, the nematode worm Caenorhabditis 
elegans6, the fruitfly Drosophila melanogaster [Science, March 24, 2000], the mouse Mus musculus 
(only the second mammalian sequenced to date, see Nature, 420, December 5, 2002) . Most spectacular 
of all is of course the Humane Genome Project, in which two teams managed to sequence the complete 

                                                 
3 In Nature of January 23, vol.421, 2003, there is a special section (pp.395-453) commemorating this 50th 
anniversary. It includes some very interesting state-of-the-art survey papers as well as some historical reprints.  
4 The genetic code of the SARS (Severe Acute Respiratory Syndrome) virus for instance, was cracked in a record 
amount of 3 weeks in April 2003, and can be found at http://www.bcgsc.ca/bioinfo/SARS (a slightly different 
version, because based on another sample, can be found at www.cdc.gov). The virus has about 29 700 nucleotides. 
The knowledge of its genetic code may help in investigating which proteins it can generate and might also lead to 
refined diagnostic tests.  
5 The genome maps of two subspecies of rice were published in Science, April 5, 2002. They pave the way for 
breakthroughs in framing humankind�s most important food staples, for instance by developing better strains of 
rice and benefits for other crops, including wheat, corn, oats, sorghum and barley (70 % of world�s agricultural 
acres are planted in rice, wheat and corn!). The sequencing was achieved in just 74 days (working around the 
clock), by a method called whole-genome shotgun technique, in which scientists break up the genome, sequence 
the overlapping pieces simultaneously, and then use advanced computing to arrange the segments as they exist on 
the chromosomes. It is estimated that rice contains between 32 000 and 50 000 genes, and it is expected that each 
rice gene creates only one protein, whereas a single human gene usually spawns several.  
6 This little worm, which only has 959 cells, is an example of what is called in biotechnology, a �model organism�, 
as its genes can be used to analyse corresponding genes and their functionalities in humans. A deeper 
understanding of the genetic processes that govern its organ development and cell death earned three scientists the 
2002 Nobel prize in Medicine. Mice are also often used as model organisms, e.g. by knocking out certain genes 
and then observe the induced developments or by inserting genes so that they can develop certain human diseases 
(such as Alzheimer�s) so that the effect of drugs can be tested.  
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human genome ([Lander, 2001], [Venter, 2001] 7. Typically, the number of genes in each of these 
genomes at this moment is unknown, albeit that estimates are available (e.g. 31000 to 35000 for 
humans). The number of genes analysed to date  ranges from a few hundred for bacteria to tens of 
thousands for mammalian species. The number of products encoded by these genes (e.g. proteins) is 
much higher.   
Bioinformatics originates in the collision of two historical trends: The exponential increase of 
computing power (as expressed by Moore�s law), and the exponential increase of biological and 
biomolecular data. Indeed, following the sequencing methodologies, many more high-throughput data 
acquisition methods have been and are being developed, including DNA microarrays (see Section 3 of 
this paper), protein measuring devices based on 2D-electrophoresis and other technologies, identifying 
the compounds present in a mixture of biological molecules using mass spectroscopy, determining the 
3D structure of proteins (using x-ray crystallography and nuclear magnetic resonance (NMR) 
spectroscopy), etc�  As a result, genome sequence information is doubling in size every 18 months 
(which coincidentally happens to be the time constant in Moore�s law too). Some experts predict a 
production of 100 GB of biological information worldwide per day !  
These biological data have certain key features (we cite here from [Altman, 2001]): 
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Biodata feature 1: Biological data is normally collected with a relatively low signal-to-noise ratio.
This creates a need for robust analysis methods.  
 
Biodata feature 2: Biology�s theoretical basis is still in its infancy, so few �first principle�
approaches have any chance of working yet. This creates a need for statistical and probabilistic
models.  
 
Biodata feature 3: Despite the wealth of biological data, biology is still relatively knowledge rich
and data poor. We know more about biology in a qualitative sense than a quantitative one. This
creates a need for complex knowledge representations.  
 
Biodata feature 4: Biology (and its associated data sources) operate at multiple scales that are
tightly linked. This creates a need for cross-scale data integration methods.  
 
Biodata feature 5: Biological research efforts are distributed, and the associated databases focus on
particular types of data. This creates a need for data integration methods.  
 
Biodata feature 6: Biologists think graphically about their work. This creates a need for user
interfaces and graphical metaphors for communicating information.
able 1: Biological data have some characteristic features that have to be taken into account when developing 
lgorithms and software tools.  

n the different subsections of this paper, we will refer to specific biodata features that are relevant for 
he problem discussed in that particular subsection.  
he increasing availability of these data, many � if not all - of which can be found in databases on the 
eb, has started to attract a lot of system theory and control engineers, statisticians and mathematicias 

o biology.  It is however predicted that an alarming shortness of bioinformaticians will occur in the 
ear future, indicating the need for training programs and representing intruiging  challenges for 
xperts in systems theory and identification, dynamical systems and control theory,  who are looking 
or nice applications (and development of new theories). People working in �our� community, or in 
ore general terms, in mathematical engineering, increasingly get involved in bioinformatics, as is 
itnessed by some special issues of journals in �our� domain, like  

- The special issue of ERCIM News (European Consortium for Informatics and 
Mathematics, www.ercim.org) of October 2000;  

- The November 2000 issue of IEEE Spectrum on �Gene sequencing�s industrial 
revolution�;  

- The December 2000 issue of the Proceedings of the IEEE on �Genomic Engineering: 
Moving beyond DNA Sequence to Function;  

- An intriguing article on �Genomic signal processing� in IEEE Signal Processing 
Magazine [Anastassiou, 2001];  

                                                
 A supercomputer was used, consisting of a cluster of 800 processors with 70 terabytes of storage. 
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- the special issue of the �IEEE Transactions on Intelligent Systems� on �Intelligent 
Systems in Biology� of  March/April 2002;  

- the special issue on �Bioinformatics� of the IEEE Journal �Computer� of July 2002 
(Vol.35, no.7);  

- the two special issues on �Bioinformatics� of the IEEE Proceedings, of November 2002 
(Vol.90, no.11) and December 2002 (Vol.90, no.12);  

- the special issue on Genomic Signal Processing of the journal Signal Processing, April 
2003;  

Of course, it is merely impossible in this survey paper to provide the reader with a complete, let alone 
exhaustive overview of what bio-informatics is about.  But these forementioned issues are a good start 
to get acquainted with the challenges. Early books on bioinformatics include [Bishop, 1997] [Baldi, 
1998]. More recent ones include [Mount, 2001] [Ewens, 2001]. Nice reading is also provided by 
collections of papers like for instance the ones on Functional Genomics (Nature Insight, Nature, 
Vol.405, no.6788, June 15 2000, pp.819-865).  Besides these books and articles, in the list of 
references at the end, we have included two types of papers: Some key scientific references, needed 
when discussing some of our results on the one hand (they will be referred to in the body of the text), 
and some more popular accounts about the state-of-the-art in genomics, biology and bioinformatics on 
the other hand, such as [Davies, 2001] [Ezzel, 2002] [Friend, 2002] [Henig, 2000] [Lesk, 2000] 
[Ridley, 1999] [Sykes, 2002] 8. 
This paper presents a view on bioinformatics that is (quite understandably and hopefully forgivable) 
subjective and heavily biased by our own research, the details of which can be found in papers listed in 
the references, most of  which can be downloaded from our website mentioned above. Two of our own 
survey papers are [Moreau, 2002a] [Moreau, 2002b].  
This paper is organized as follows:  

- In Section 2, we review some necessary basic biological facts that are needed for a further 
understanding of this paper (It is of course infeasible to do justice to the current state of 
knowledge in biology within the context of this paper and we realize that this Section, to a 
trained biologist or physician, is hopelessly naïve); 

- In Section 3, we discuss microarray technology, which allows to unravel many genetic 
mechanisms by observing thousands of gene expression levels at once, and will play a very 
important  role in both scientific and clinical applications in the near future. We will also 
elaborate on the indispensable sequence of steps required to store and preprocess microarray 
data;  

- In Section 4, we will concentrate on the state-of-the-art in bioinformatics algorithms, giving a 
(biased) survey of basic tools from linear algebra and statistics, advanced clustering methods 
and  statistical Gibbs sampling based algorithms, including a recently developed biclustering 
algorithm;  

- In Section 5, we will present several cases that demonstrate the central role mathematical 
engineering methodologies play in modern biotechnology, ranging from  

o Performance assessment of clinical classiciation and prediction methodologies in 
diagnosis, prognosis and therapy response of leukemia (Subsection 5.1 and 5.2);  

o Discovery of relevant genes or groups of genes in yeast cell cycles (Subsection 5.3.);  
o Motif detection in Arababidopsis thaliana (Subsection 5.4.);  

- Finally, in Section 6, we present some visionary views on future developments in technology 
(we survey several �-omes� and �-omics�), algorithms (Bayesian networks, support vector 
machines), systems biology and computational biomedicine.  

The type of bioinformatics we will mainly be dealing with in this paper is largely concentrated on 
transcriptomics, analyzing data that originate from so-called microarrays, that allow to obtain gene 
expression levels from thousands of genes simultaneously. Of course, the whole field of bioinformatics 
will grow much larger than transcriptomics alone, and we will elaborate on these future perspectives in 
Section 6.  We will show how the road towards a deeper understanding of biological processes of life, 
disease and death, lies wide open.  Brand new hardware and information technologies have raised 
grand expectations for biology and medicine, where they will be instrumental in unraveling the 
molecular and cellular mechanisms of acquired or inherited diseases, lead to the development of new 
diagnostic methods, prevention methodologies,  therapeutics or successful treatment. 
 

                                                 
8 That bioinformatics is a rapidly evolving discipline, is also witnessed by some (only indicative) statistics of the 
reference list of this paper, 9.5 % of which is from 2003, 34.5 % from 2002, 24 % from 2001, 7 % from 2000 and 
another 25 % from 1999 and earlier.  
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2. Organisms from Venus: (Some) biology  
 

Biodata feature 3 
 

It has not escaped our notice  that the specific pairing we have  postulated  
 immediately suggests a possible copying mechanism for the genetic material 

Crick & Watson in their 1953 Nature paper 
 
In this Section, we briefly discuss DNA, which contains the code and structure of living organisms,  
RNA, which acts a messenger and  proteins, which can be seen as effectors. Obviously, we can only 
provide a very crude introduction to biology, and as a compensation, we refer to some very nice books, 
such as [Griffiths, 1996] [Kreuzer, 1996] [Griffiths, 1999] [Brown, 2002] [Karp, 2002] for more 
detailed, extensive and didactical expositions.  
The human body is made up of trillions of cells, the nucleus of which contains an identical complement 
of chromosomes. Each chromosome is one long DNA molecule, and genes are functional regions of 
this DNA 9. DNA stands for DeoxyriboNucleic Acid. The genome of every living organism, its genetic 
sequence, consists of genetic building blocks, called nucleotide bases, that make up its DNA.  There 
are 4 of them, called  A (adenine), C (cytosine), T  (thymine) and G (guanine). The humane genome 
contains approximately 3 billion DNA bases, and an (almost complete) draft of its sequence is now 
available [Lander, 2002] [Venter, 2002].  The geometric structure of DNA is the famous double helix 
discovered by Crick and Watson [Watson, 1953] 10: The structure looks like a spiral staircase, in which 
the backbone of each strand is a repeating phosphate-dexoyribose sugar polymer and the stairs are 
formed by (always) complementary pairs of A-T and C-G. Genes are segments of DNA that encode the 
structure of some cellular product, but also bear control buttons that determine when, where and how 
much of that product is synthesized. Most genes encode for proteins through the intermediate action of 
messenger RNA (RiboNucleic Acid, mRNA). As the genome of many organisms has been sequenced, 
estimates of the number of genes become more and more reliable. Some examples are: Bacteriophage 
lambda  (genome size 5.0E+04 base pairs, 60 genes), Escherichia coli (4.6E+06 bp, 4290 genes), Yeast 
(12.0E+06 bp, 6144 genes), Drosophila melanogaster (1.0E+08 bp, 13338 genes), Caenorhabditis 
elegans (1.0E+08 bp, 18266 genes), Arabidopsis thaliana (2.3E+08 bp, 25000 genes), Homo sapiens 
(3.0E+09 bp, 32000 genes).  
RNA has a number of biological functions (informational RNAs, Functional RNAs (Transfer RNA, 
Ribosomal RNA,�),..), but one of its primary function is to be the working copy of the gene (a copy 
made directly from the DNA) that is then used to synthesize proteins. The first step in the way  genes 
encode for proteins is to copy (transcribe, transcription) the information encoded in the DNA of the 
gene as a related, but single-stranded molecule called messenger RNA (mRNA) (In RNA, the �T� is 
replaced by Uracil, denoted by �U�). The gene and the genomic region surrounding it consist of a 
transcribed sequence, which is converted into an mRNA transcript, and of various untranscribed 
sequences, called untranslated regions (UTRs).  These UTRs play a major role in the regulation of 
expression. Notably, the promoter region in front of the transcribed sequence contains the binding sites 
for the transcription factor proteins that start up transcription. The transcription process is initiated by 
the binding of several transcription factors to regulatory sites in the DNA, usually located in the 
promoter region of the gene. The transcription factor proteins bind each other to form a complex that 
associates with an enzyme called RNA polymerase. This association enables the binding of RNA 
polymerase to a specific site in the promoter. Together, the complex of transcription factors and the 
RNA polymerase unravel the DNA and separate both strands. Subsequently, the polymerase proceeds 
down on one strand while it builds up a strand of mRNA complementary to the DNA, until it reaches 
the terminator sequence. In this way, an mRNA is produced that is complementary to the transcribed 
part of the gene. Then, the mRNA transcript detaches from the RNA polymerase and the polymerase 
breaks its contact with the DNA. In a later stage, the mRNA is processed, transported out of the 

                                                 
9 At the time of writing of this article, April 2003, a team of 90 scientists from 10 countries has just completely 
finished chromosome 7 of the human genome, which contains 158 million nucleotides (see  Science, April 11, 
2003 and www.chr7.org) . 1455 genes have been identified, some of which are responsible for genetic diseases 
such as mucoviscidose, leukemia and autism. So far, only chromosomes 14 (Nature Feb. 6, 2003), 20, 21 and 22 
had been fully completed (�fully� means that 99.99 % of the �letters� are correct).   
10 Event though throughout history, DNA research has resulted in 9 Nobel Prizes, as of today there is still a lot of 
research activity on the properties of DNA (see the special issue of the New Scientist of March 15, 2003: DNA: 
The next fifty years). 
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nucleus, and translated into a protein. Moreover, the region upstream of the transcription start contains 
many binding sites for transcription factors that act as enhancers  and  repressors of gene expression 
(although some transcription factors can bind outside this region). Transcription factors are proteins 
that bind to regulatory sequences on eukaryotic chromosomes thereby modifying the rate of 
transcription of a gene. Some transcription factors bind directly to specific sequences in the DNA 
(promoters, enhancers, and repressors), others bind to each other. Most of them bind both to the DNA 
as well as to other transcription factors. It should be noted that the transcription rate can be positively 
or negatively affected by the action of transcription factors. When the transcription factor significantly 
decreases the transcription of a gene, it is called a repressor. If, on the other hand, the expression of a 
gene is upregulated, biologists speak of an enhancer. 
The expressed mRNA is brought to the ribosome, which can be considered as a protein factory. In a 
ribosome, the genetic code is used to read off the sequence of amino acids  that will create a protein. 
This step is called translation.  A protein is a polymer composed of monomers called amino acids. The 
amino acid sequence is determined by the nucleotide sequence of the gene that encodes for it. As a 
ribosome moves along the mRNA, it reads three nucleotides at a time, called a triplet codon. Since 
there are 4 different nucleotides (A-C-U-G), there are 4x4x4=64 different possible codons.  There are 
20 amino acids, each of them encoded by a codon. This genetic code, which is summarized in Table 1, 
is used by virtually all organisms on the planet.  
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Figure 1. In Eukaryotes, AUG is generally the first codon (start). Some codons in the Table do not specify 
an amino acid at all, such as UAA, UAG and UGA. They are called stop or termination codons, that can be 
regarded as punctuation marks ending the message encoded in the mRNA. Often, potential genes are 
identified by looking for open reading frames (ORFs), which are DNA sequences that start with an 
initiation codon ATG and end in one of the three stop codons.  
ach string of amino acids then folds into a 3D protein structure. The determination of the exact 3D 
tructure of a protein starting from its 1D amino acid sequence, which is basic for understanding its 
unctionality, is still quite a challenge (protein folding, see also [Altman, 2001] for computational 
hallenges). Protein architecture is the key to gene function. The specific amino acid sequence 
etermines the general shape, binding properties and reactivity of proteins,  that can be responsible for 
nzymatic catalysis, structural support, motion, signal transduction of physical signals (e.g. light), cell-
o-cell communication, and many other functions. Proteins are the most important determinants of the 



 8

properties of cells and organisms.  Any failure in the genetic procedure above, can result in genetic 
deficiencies and diseases 11.   
 

3. Technology from Jupiter: Transcriptomics and 
micro-arrays  
 

Biodate feature 1 
 
Microarray technology is one of the most promising technologies recently developed in molecular 
biology [Schena, 1995] [DeRisi, 1997] [Lander 1999]. Microarrays make it possible to measure in 
parallel the activity or expression (transcription or amount of mRNA produced for a specific gene) of 
thousands of genes in a certain tissue (e.g. in a tumour), measurements that can be repeated under 
several different conditions (e.g. normal versus malignant tissues, tumours that are or are not sensitive 
to chemotherapy, tumours with or without metastatic potential, etc�) or over several tens to hundreds 
of patients. The hardware will be explained in Subsection 3.1., while in Subsection 3.2, we briefly 
discuss the required Laboratory Information Management Systems set up and the necessary 
preprocessing of the data is the subject of Subsection 3.3.    

3.1. Microarrays 
 
Microarrays in essence exploit the complementarity of DNA as evidenced in the double helix structure. 
As we have seen in Section 2, cells produce the proteins they need to function properly by (1) 
transcribing the corresponding genes from DNA into messenger RNA (mRNA) transcripts and (2) 
translating the mRNA molecules into proteins. Microarrays obtain a snapshot of the activity of a cell by 
deriving a measurement from the number of copies of each type of mRNA molecule (which also gives 
an indirect and imperfect picture of the protein activity). The key to this measurement is the double-
helix hybridization properties of DNA (and RNA):  When a single strand of DNA is brought in contact 
with a complementary DNA sequence, it will anneal to this complementary sequence to form double-
stranded DNA. For the four DNA bases, Adenine is complementary to Cytosine and Guanine is 
complementary to Thymine. Because both strands have opposite orientations, the complementary 
sequence is produced by complementing the bases of the reference sequence starting from the end of 
this sequence and proceeding further upstream. Hybridization will therefore allow a DNA probe to 
recognize a copy of its complementary sequence obtained from a biological sample.  An array consists 
of a reproducible pattern of different DNA probes attached to a solid support, as a lawn of single-
stranded DNA molecules that are tethered to a wafer often not bigger than a thumbprint.  After RNA 
extraction from a biological sample, fluorescently labeled complementary DNA (cDNA) or cRNA is 
prepared. This fluorescent sample is then hybridized to the DNA present on the array.  Each kind of 
probe � be it a gene or a shorter sequence of genetic code � sits in an assigned spot within a 
checkerboardlike grid on the chip. The DNA or RNA molecules that get poured over the array carry a 
fluorescent tag that can be detected by a scanner.  Thanks to the fluorescence, hybridization intensities 
(which are related to the number of copies of each RNA species present in the sample) can be 
measured by a laser scanner and converted to a quantitative readout.  
DNA microarrays are used for genotype applications (in which the DNA on a chip is compared to the 
DNA in a tissue sample to determine which genes are in the sample or to decipher the order of the code 
letters in as yet unsequenced strings of DNA).  But increasingly more often these days, the microarrays 

                                                 
11 As an example, consider Huntington�s disease, cause by the gene huntingtin, that lies at the tip of chromosome 
4 and was identified in 1993 [Cattaneo, 2002] and which is one of a number of inherited neurodegenerative 
disorders characterized by the presence of CAG repeat coding for an expanded polyglutamine domain. Normally 
the gene contains between 9 and 35 repeats of the DNA sequence CAG, that encodes for the amino acid glutamine. 
But in families with Huntington�s, the gene usually has between 40 to 60 repeats. When transcribed into messenger 
RNA, which directs the cell�s protein-making machinery (transfer RNA and ribosomes), mutant huntingtin 
contains a large polyglutamine region, that probably causes the disease by either disabling huntingtin protein or by 
allowing to stick to and inactivate normal huntingtin protein or other proteins, or by a combination of these 
mechanisms. The abnormal proteins form insoluble protein aggregates, accompanied by neural dysfunction and 
cell loss. Such protein aggregates appear to be toxic to brain cells. 
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are used to assess the activitity level, called �expression�, of genes. A gene is said to be expressed when 
it is transcribed into messenger RNA (mRNA) and translated into protein. Generally, the more copies 
of mRNA a cell makes, the more copies of protein it will make, so, in this sense, the quantities of the 
various mRNAs in a sample can indirectly indicate the types and amounts of proteins present. Proteins 
in a certain sense are more interesting than DNA, because they control and carry out most activities in 
our bodies� cells and tissues.  Through �guilt-by-association�, genes of unknown functions can be 
assigned a putative function by linking them to genes with similar patterns of expression whose 
function is already known. In many organisms, genes for which nothing is known about the function, 
still represent 30% of the genome and for many more genes the information available is fragmentary at 
best. Microarrays therefore provide a powerful approach to this extremely pressing question. Further, 
they are invaluable for unraveling the networks of regulation that control the dynamic behavior of 
genes. Understanding the network of interaction between genes is the central goal of genomics and we 
will come back to all of this further down in this paper. A picture of the robotic set up of typical 
microarray hardware, and an example of a resulting image, is shown in Figure 2.  
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Figure 2: Left:  Microarray spotter (from [DeRisi, 1007]) ;       Right: Typical microarray image  
n array consists of a reproducible pattern of different DNAs (primarily PCR products or 
ligonucleotides � also called probes) attached to a solid support. Fluorescently labeled cDNA, 
repared from mRNA, is hybridized to the complementary DNA present on the array. cDNA-DNA 
ybridization intensities are measured by a laser scanner and converted to a quantitative read out. This 
ata can be further analyzed by data-mining techniques (see below).  

wo basic types of arrays are currently available: 
). Spotted arrays (Duggan et al., 1999) or cDNA-microarrays are small glass slides on which pre-
ynthesized single stranded DNA or double-stranded DNA is spotted. These DNA fragments are 
sually several hundred base pairs in length and are derived from ESTs (Expressed Sequence Tag, 
hich are subsequences from an mRNA transcript that uniquely identify this transcript) or known 

oding sequences from the organism studied. Usually each spot represents one single ORF (Open 
eading Frame) or gene. A pair of cDNA samples is independently copied from the corresponding 
RNA populations (usually derived from a reference and a test sample (e.g., normal versus malignant 

issue)) with reverse transcriptase and labeled using distinct fluorochromes (green and red). These 
abeled cDNA samples are subsequently pooled and hybridized to the array. Relative amounts of a 
articular gene transcript in the two samples are determined by measuring the signal intensities 
etected for both fluorochromes and calculating the ratios (here, only relative expression levels are 
btained). A cDNA microarray is therefore a differential technique, which intrinsically (at least 
artially) normalizes for noise and background. An overview of the procedure that can be followed 
ith spotted arrays is given in Figure 3. 
). GeneChip oligonucleotide arrays (Affymetrix, Inc., Santa Clara, CA) (Lipshutz et al., 1999) are 
igh-density arrays of oligonucleotides synthesized in situ using light-directed chemistry 
photolithographic technology similar to chip technology)  consisting of thousands of different 
ligomer probes (25-mers). Each gene is represented by 15-20 different oligonucleotides, serving as 
nique sequence-specific detectors. In addition mismatch control oligonucleotides (identical to the 
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perfect match probes except for a single base-pair mismatch) are added. These control probes allow for 
estimation of cross-hybridization and significantly reduce the number of false positives. With this 
technology, absolute expression levels are obtained (no ratios). 
 
For a popular account on microarrays, we refer to [Friend, 2002] or also to the animated technology 
demonstration that can be found at http://www.bio.davidson.edu/courses/genomics/chip/chip.html.  
Some publicly available microarray datasets include one on leukemia ([Golub, 1999], also discussed in 
Section 5 below), breast cancer [Van �t Veer, 2000],  Colon Tumor [Alon, 1999], mitotic cell cycle in 
yeast [Cho, 1998] (also discussed below).  DNA microarrays, first introduced commercially in 1996, 
are now mainstays of scientific research, drug discovery, medical diagnosis and prognosis, etc. There 
are several companies producing these arrays and the whole sector is in a permanently ongoing 
technological evolution.  More and more research institutions and companies have their own 
microarray facilities (see e.g. the one of the Flemish Biotech Institute at www.vib.be/maf ).    
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Figure 3: Schematic overview of an experiment with a cDNA-microarray. (1) Spotting of the pre-synthesized 
DNA-probes (derived from the genes to be studied) on the glass slide. These probes are the purified products 
from PCR-amplification of the associated DNA-clones. (2) Labeling (via reverse transcriptase) of the total 
mRNA of the test sample (tumor - red) and reference sample (green). (3) Pooling of the two samples and
hybridization (4) Read-out of the red and green intensities separately (measure for the hybridization by the test
and reference sample) in each probe. (5) Calculation of the relative expression levels (intensity in the red
channel / intensity in the green channel). (6) Storage of results in a database. (7) Data mining and algorithms.  
 

he technology of microarrays is changing so rapidly and has become so important that dedicated 
rganizations have been created to coordinate its development, such as the Microarray Gene 
xpression Data Society (MGED, see www.mged.org,  and their international meeting (see e.g. 
ttp://tagc.univ-mrs.fr/mged6/ ). Also, in order to standardize the way microarray experiments should 
e performed, some universal rules were defined on how to annotate every microarray based 
xperiment to allow unambiguous interpretation of its results (MIAME: Minimum Information About a 
icroarray Experiment, [Brazma, 2001]). MIAME-compliant microarray experiment annotation can be 

one by simply following the MIAME checklist and web-based forms., and has been adopted by many 
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scientific journals (including e.g. Nature12, the Lancet,�) as a requirement for microarray based 
publications.  
 

3.2. MAF-LIMS: Microarray-facility Laboratory Information 
Systems 

Biodata feature 5 
  

The production of a microarray is a complex procedure that is inevitably error prone. This necessitates 
the backtracking on several experimental settings or hypotheses. A recent study for example report 
error rates over 35% of the data points due to lack of consistency checks and flaws in annotation 
[Knight, 2001]. Although it is impossible to render a system foolproof, guaranteeing an acceptable 
quality level and reproducibility is possible through meticulous recording of the various steps in the 
data generation process using a Laboratory Information Management Systems (LIMS). The use of 
standards to this end can enhance and prolong the life cycle of a microarray experiment.  
The following steps involved in the production of a cDNA microarray illustrate the many points, which 
are noise-sensitive or error-prone. 

• Purchase or generation of proprietary �clone� library � a collection of genetic fragments 
ideally representing a set of genes of a given organism. These clones are multiplied, stored 
and ordered into so called well-plates, usually per 96 or 384. 

• Contamination (leaking of DNA fragments to neighboring wells) and equipment constraints 
usually require a reordering of the clones usually performed by pipetting robots. 

• In the final preparation another robot �prints� the genetic material to the glass slide so that 
each spot represents a single open reading frame or a gene. The biochemistry of this printing 
(or �spotting�) is complex and the configurations that are possible, are numerous. 

These procedures lead to a spotted glass slide or microarray, which can be used to conduct an 
experiment. To successfully backtrack on any errors that might have occurred during this labor-
intensive production process, an automated administration of each action on the workbench is 
necessary.  LIMS serve this goal and we developed a first version for the Microarray Facility of our 
Biotechnology Institute (www.vib.be), visualized in Figure 4.  The hybridization(s) of test and 
reference sample on one or several microarrays and the consecutive measurement of the relative 
abundance of the screened gene transcripts represent the core of a single microarray experiment. 
Therefore it is connected in a modular way to the LIMS information.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
12 See Nature, 26 September 2002, Vol.419, p.323.  

 

Figure 4: Screenshots of our Laboratory Information Management System: the various steps involved in a 
hybridization experiment are visualized for optimal tracking.  
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3.3. Preprocessing data  
Biodata feature 1& 4 

 
Recalling the several �biodata features� enumerated in Section 1, it should come as no surprise that, 
with the current state of technology, observations from biological experiments are extremely noisy, 
with possibly outliers and missing values. Preprocessing methods are definitely needed to derive, for 
each gene, the intrinsic expression level as caused by the condition tested. Many methods to preprocess 
the data have been proposed in the literature. A thorough understanding of how different preprocessing 
methods transform the data and the search for a set of preprocessing techniques that make the data 
compatible with further analysis, is a crucial aspect of microarray analysis. We present two different 
approaches, known as the ratio technique, which is the �traditional� one and the ANOVA technique, 
which is the more �modern� one,  to perform normalization and to detect differentially expressed genes. 
More details and references can be found in [Quackenbush, 2001] [Yang, 2002] and our own work 
[Marchal, 2002] [Moreau, 2002a] [Moreau, 2002b]. Our experience and expertise in preprocessing 
microarray data has been made publicly available at http://www.esat/kuleuven.ac.be/maran, which later 
on was also integrated in INCLUSive (which is a web portal and service registry for microarray and 
regulatory sequence analysis, see Section 5).  
 
3.3.1. Sources of noise 
 
To understand the necessity and importance of preprocessing, we need to have a clear picture of the 
raw data generated by a microarray experiment. As a detailed example, we describe a simple black-
white experiment based on a Latin square design in Figure 5.  
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tic representation of a Latin Square design; In such design, expression in two distinct 
ared (test and reference condition). On the first array, the test sample is labeled with Cy5 (red
responding reference is labeled with Cy3 (green dye). For each gene, two replicate spots are
array (referred to as left and right spot). In addition a color-flip experiment is performed: the 
rence conditions are measured once more in duplicate on a different array where dyes have 
ch a design results in four measurements per gene for each condition tested, though not 
e with each other.   
ts that prohibits direct comparison between measurements are the �condition and dye 
fects reflect differences in mRNA isolation and labeling efficiency respectively 
f the conditions tested. For genes equally expressed in both the reference and the 

e ratio of test/ref is expected to be 1. Condition and dye effects result in a deviation 
 1. The mathematical transformation that tries to compensate for these effects is 
n. A second source of variation is related to the imperfections of the spotting device 
e array. Small variations in pin geometry, target volume and target fixation cause 

riations in the amount of cDNA present on the array. The observed signal intensity 
ect differences in mRNA population present in the sample but also the amount of 
epending on the influence of the spot effects, direct comparison of the absolute 
may be unreliable.  This problem can be alleviated by comparison of the relative 
(ratio of the test and reference intensities) instead of the absolute levels. Indeed 
have been measured on the same spot and by dividing the measured intensities, spot 

hen performing multiple experiments (i.e., more arrays), arrays are not necessarily 
usly. Differences in hybridization efficiency can result in global differences in 
 slides, making measurements derived from different slides mutually incomparable. 
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This effect is generally called the array effect. All these effects occur simultaneously and prohibit 
direct comparison of expression levels.  
 
3.3.2. Log transformation of the raw data  
 
A log transformation of the data is the initial step in the preprocessing data analysis flow. Its necessity 
is explained in Figure 6 [Baldi, 2001] [Kerr , 2000].   Especially when dealing with expression ratios 
(coming from two-channel cDNA microarray experiments, using a test and reference sample), this 
transformation is suited since expression ratios are not symmetrical. Upregulated genes have 
expression ratios between 1 and infinity, while downregulated genes have expression ratios squashed 
between 1 and 0. Taking the logarithms of these expression ratios results in symmetry between 
expression values of up- and downregulated genes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3.3. Filtering data 
 
As a next step in the preprocessing flow, filtering is used to remove unreliable measurements or zero 
values from the data set. Such filtering procedures often depend on the choice of an arbitrary threshold 
(e.g., all genes of which the measured expression value does not exceed twice the expression level of 
the background are discarded). Since in our data sets the green and red channel display different 
sensitivities in the low expression level range, the choice of such threshold is prone to mistakes. 
Therefore, if possible we try to avoid filtering procedures based on an arbitrary threshold and try to 
retain all genes for further analysis [Kadota, 2001]. The use of robust statistical tests allows for the 
discrimination between statistically over- and underexpressed genes at a later stage of the analysis. 
Zero values result in undefined values (e.g., when dividing by zero values or taking the log of a zero 
value) and therefore are automatically discarded for further analysis. However, in the light of a black & 
white experiment, zero values might be of major biological significance. Indeed consistent zero values 
correspond to genes switched off in one condition,  but on in the other condition, might be very 
significant. Therefore if a least one measurement for a gene contains a zero value in a particular 
condition, all measurements of that gene are treated separately.  

Figure 6. In the left Figure, replicate measurements (normal and color flip) of different genes are plotted
against each other. The x-axis is the intensity measured in the red channel., the y-axis in the green channel. 
When considering untransformed raw data (background corrected intensity values), the increase of the
residuals with increasing signal intensities clearly reflects the multiplicative effects. The increase of the 
measurement error with increasing signal intensities as present in the untransformed data is counterintuitive
since high expression levels are generally considered more reliable than low levels. It is well known that 
multiplicative errors decrease the efficiency of most statistical tests. Therefore, it is important to get rid of
multiplicative errors by log-transforming the data.  In the Figure on the right, we show the influence of a log2
transformation on the multiplicative and additive errors; x- axis: log2 of intensity measured in red channel, y-
axis: log2 of intensity measured in green channel.  
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3.3.4. Ratio approach  
 
Normalization is a mandatory step to remove consistent condition and dye effects.  Although the use of 
spikes (control spots, external control) and housekeeping genes (genes expected not to alter their 
expression level under the conditions tested) has been described, global normalization is considered as 
most reliable. Global normalization assumes that only a small fraction of the total number of genes on 
the array alters its expression level and that symmetry exists in the number of genes that is upregulated 
versus downregulated. Under this assumption the average intensity of the Cy3 channel should be equal 
to the average Cy5 channel. Based on this hypothesis, the average ratio log2 (red/green) should be 
equal to 0. Regardless of the procedure used, all normalized log-ratios therefore will be centered on 
zero.  Linear normalization assumes a linear relationship between red (R) and green (G) intensities.  A 
common choice for c = log2k is the mean or the median of the log intensity ratios for a given gene set. 
Alternatively the constant normalization factor can be determined by linear regression of the red signal 
versus the green signal. The coefficient as identified by regression determines the rescaling factor that 
should be used to either divide or multiply the red signal to obtain an average signal of 0 (in log scale).  
As can be derived from Figure 7, the assumption of a constant rescaling factor for all intensities is an 
oversimplification. Indeed dye and condition effects seem to be dependent on the measured intensity. 
Such intensity dependent patterns are better visualized using a plot of M versus A (see Figure 7 for 
definitions of M and A). The relationship between the dyes is linear only in a certain range. However, 
when measured intensities are extreme (either high or low) nonlinear effects occur.  To take into 
account these nonlinear effects during normalization, we prefer to use a robust scatter plot smoother 
Lowess that performs locally linear fits and allows calculating the normalized absolute values log2(R) 
and log2(G).  
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Figure 7.  (A) Representation of the log intensity ratio M = log2 R/G versus the mean log intensity A =
(log2(R)+log2(G))/2. At low average intensities on average the ratio becomes negative indicating that the
green dye is consistently more intense than the red dye. Either the sensitivity of the red signal is lower than
the one of the green signal or the basal noise level on the green signal is more pronounced. To compensate
for nonlinear dye effects a Lowess fit with f value of 0.2 was used (solid line). (B) x axis log2(R); y axis:
log2(G) Represents a plot of the log intensity of the R versus G prior to normalization by Lowess (green
dots) and after Lowess normalization (blue dots). (New values of the log intensities of red and green were
calculated based on the Lowess fitted values M and A.) 
fter these transformations, we can use the preprocessed values (corrected for array, spot, dye, and 
ondition effects) to identify which genes show a differential level of expression between the two 
onditions by using a test statistic (T-test, paired T-test, Bayesian T-test). The drawback of most of 
hese classical test statistics is the need for a high number of replicates. Since microarray experiments 
re expensive and labor intensive, the limited number of replicates usually available decreases the 
eliability of using classical T-tests. 
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3.3.5. Analysis of variance 
 
An alternative approach that avoids the use of ratios and the need for a high number of replicates is 
based on analysis of variance (ANOVA), in which the measurement of the expression level of each 
gene is modeled as a linear combination of the major sources of variation that we have been describing. 
Several major effects representing the condition, dye and array effects, and combinations (2-, 3-, and 4-
level combinations) of these main effects are taken into account in the models. Not all of the combined 
effects, however, have a physical meaning and only those considered to be important are retained in the 
models. Reliable use of an ANOVA model therefore requires a good insight into the process to be 
modeled. The model that best corresponds to physical reality is preferred.  The most important 
combined factor in all models is the GC effect, the factor of interest. The GC effect reflects the 
expression of a gene depending on the condition (i.e., condition specific expression). The following 
equation represents the ANOVA model of microarray data taking into account the gene effect (G), 
condition effect (C), the dye effect (D), array effect (A), replicate effects (R), spot effects (AG): 
 

ijklmijkiimlkjiijklm GCAGRDACGI εµ ++++++++= )()()(  
 
The effect of interest (GC), R is �nested� within G (indicated by brackets in the subscripts). One of the 
basic requirements of ANOVA is that all dependencies need to be linear.  This should be reflected by a 
normal distribution of the residuals of the fit with zero mean and equal variance. These requirements 
imply that mathematical transformations (log transformation described above) are mandatory to 
compensate for multiplicative effects.  The prerequisite of normally distributed residuals however, is 
not too stringent; a proper ANOVA analysis can be done when residuals are independent and 
identically distributed (i.i.d.), but not necessarily normal, with zero mean and constant variance. One of 
the major advantages of the ANOVA approach is that it allows gaining more information from the data 
than by looking at each gene separately (e.g., the array effect is similar to all genes on an array). Since 
all measurements are combined to allow statistical inference, the need for a high number of replicates is 
less pronounced. Figure 8 shows the results of an ANOVA model on Lowess normalized data (see 
[Yang, 2002]) that takes into account the 4 main factors (see above) and the factor of interest. It 
compensates for array, dye and condition effects and spot effects. To model the spots, a relationship 
between spots on the same array and a relationship between all left and right spots is assumed.  
 

 
 
 
 
 
 
 
 
 

 
An important problem with current ANOVA models for microarrays is that nonlinearities can be 
observed in the residual plots, which means that the basic assumptions of the model are not entirely 
fulfilled. Finding a proper data transformation that would render the residuals linear with respect to the 
estimated intensity values is the current focus of our research. A possibility here is the use of LS-SVMs 
(see Section 6.2. below).  
Obviously, microarray experiments are not always simple black & white experiments, like the one 
explained above.  Very often more complex designs are used to investigate biological processes of 
interest.  This is certainly true when more than two conditions need to be compared (e.g., a time course 
experiment, a comparison between different mutant strains, and so on).  The methodologies just 
described can be extended without much trouble to handle these more complex experiments. It is clear 
that microarray technology is very powerful but data generated by these techniques must be handled 
with caution. At first, there is a need for a consistent recording of the complete production procedure so 
that mistakes can easily be traced. Secondly, data need to be cleaned prior to further analysis. Once 
preprocessed, the data can be used for further data exploration and data mining as we will now explain. 

 
Figure 8. Result showing the ANOVA table and corresponding residual plot of the ANOVA model on the log
transformed Lowess normalized data. 
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4. Algorithms from Mars: How to process microarray 
data ?  
 
In this Section, we will elaborate on some often used algorithms in microarray data analysis, including 
Principal Component Analysis (or the Singular Value Decomposition) and some classical and newly 
developed clustering algorithms, including a recently developed and very promising method of 
biclustering, We will also discuss statistical sampling methods (such as an extended version of Gibss 
sampling).  

4.1. Basic tools from linear algebra and statistics  
 
The basic linear algebra tools used in bio-informatics are linear regression (e.g. in the ANOVA model) 
and principal component analysis (PCA) for feature extraction and dimensionality reduction. An 
example of this will be shown  in Subsection 5.1, where we will use PCA to design a diagnosis test in 
leukemia and in Subsection 5.2, where we show how PCA can lead to the discovery of new classes.  
The SVD of an uncentered expression matrix was also proposed in [Alter, 2000] [Nielsen, 2002] to 
define the notion of �eigengenes� and �eigenarrays�. 

4.2. Clustering techniques 
Biodata feature 2 and 6  

 
Starting from the preprocessed microarray data, a first major computational task is to cluster genes into 
biologically meaningful groups according to their pattern of expression. Such groups of related genes 
are much more tractable for study by biologists than the full data itself. As explained in the previous 
section, we can measure the expression levels of thousands of genes simultaneously. These expression 
levels can be determined for samples taken at different time points during a certain biological process 
(e.g., different phases of the cycle of cell division) or for samples taken under different conditions (e.g., 
cells originating from tumor samples with a different histopathological diagnosis). For each gene, the 
arrangement of these measurements into a (row) vector leads to what is generally called an expression 
profile. These expression profiles or vectors can be regarded as data points in a high-dimensional 
space.  Because relatedness in biological function often implies similarity in expression behavior (and 
vice versa) and because several genes might be involved in the process under study, it will be possible 
to identify subgroups or clusters of genes that will have similar expression profiles (i.e., according to a 
certain distance function, the associated expression vectors are sufficiently close to one another). Genes 
with similar expression profiles are said to be coexpressed. Conversely, coexpression of genes can thus 
be an important observation to infer the biological role of these genes. For example, coexpression of a 
gene of unknown biological function with a cluster containing genes with known (or partially known) 
function can give an indication of the role of the unknown gene 13.  
Besides functional relationship, clustering is also a first step preceding further analysis,  which includes 
motif finding, functional annotation, genetic network inference, and class discovery in the microarray 
data. Moreover, clustering often is an interactive process,  where the biologist or medical doctor has to 
validate or further refine the results and combine the clusters with prior biological or medical 
knowledge. Full automation of the clustering process is here still far away. Classical �general-purpose� 
clustering techniques (developed �outside� biological research) such as hierarchical clustering, K-
means, self-organizing maps, model-based clustering (i.e. based on a mixture of probability 
distributions) can be applied here  (see e.g. [Duda, 2001] [Moreau, 2002]  [De Smet, 2002] for a 
survey).  In this paper, we will only briefly discuss two methods: Hierarchical clustering, which is one 
of the de facto standards in bioinformatics,  and AQBC (Adaptive Quality Based Clustering).  In Table 
2 we give a survey of some publically available clustering algorithms.  

                                                 
13 An example of such a study is [Dabrowski, 2002] where we preformed mRNA expression profiling (6 time 
points) of mouse primary hippocampal neurons undergoing differentiation in vitro. We have shown that 2319 
genes significantly change expression during neuronal differentiation, and the patterns allow to distinguish 
between several stages of neurite outgrowth. Cluster analysis reveals that a high level of expression of genes 
involved in the synthesis of DNA and protein, precedes upregulation of genes involved in protein transport, energy 
generation and synaptic functions. Some 419 genes were found to be likely to belong to an intrinsically driven core 
of the neuronal differentiation program. 



 17

 
 
 

    URL 
Cluster http://rana.lbl.gov/EisenSoftware.htm  
J-Express http://www.molmine.com  
Expr. Profiler http://ep.ebi.ac.uk/  
SOTA http://bioinfo.cnio.es/sotarray  
MCLUST http://www.stat.washington.edu/fraley/mclust  
AQBC http://www.esat.kuleuven.ac.be/~dna/BioI/Software.html     

 
Table 2: Websites with some clustering algorithms  

 
4.2.1. Hierarchical clustering 

 Biodata feature 6 
 
Hierarchical clustering (see e.g. [Duda, 2001] [Quackenbush, 2001]) is the de facto standard in 
clustering gene expression data. It  has the advantage that the results can be nicely visualized (see 
Figure 9 for an example).   Two approaches are possible: a top-down approach (divisive clustering) and 
a bottom-up approach (agglomerative clustering). As the latter one is most commonly used, we explain 
it in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                
Figure 9. Typical result of hierarchical clustering. The rows of a gene expression matrix are the gene
expression profiles, that are vectors the components of which are the intensities as measured over several time 
points, conditions or patients. One column of such a matrix could be obtained by vectorizing one microarray
experiment (the microarray matrix from Figure 2). The end result of hierarchical clustering is a permutation of
the rows of the gene expression matrix (the matrix as visualized is also called a �heat map�).  First, each gene
expression profile is assigned to a single cluster. The distance (measured in some way, see below) between
every couple of clusters is calculated according to a certain distance measure (this results in a pairwise 
distance matrix). Iteratively (and starting from all singletons as clusters), the two closest clusters are merged
and the distance matrix is updated to take this cluster merging into account. This process gives rise to a tree 
structure where the height of the branches is proportional to the pairwise distance between the clusters.
Merging stops if only one cluster is left. Clusters are formed by cutting the tree at a certain level or height.
Note that this level corresponds to a certain pairwise distance which in its turn is rather arbitrary (it is difficult
to predict which level will give the best biological results). Finally, note that the memory complexity of
hierarchical clustering is quadratic in the number of gene expression profiles.  This can be a problem when 
considering the current size of bioinformatics data sets.  
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4.2.2. Adaptive quality based clustering (AQBC)  
 
One problem with classical clustering algorithms is that typically they require the pre-specification of 
one or more user-defined parameters, that are often hard to estimate by a biologist (e.g. the number of 
clusters in K-means when clustering gene profiles, almost impossible to �guess� a priori). Another 
problem is that many clustering algorithms often force every data point to be in a cluster. It so happens 
that in every microarray experiment a considerable number of genes does not contribute to the 
biological process under study, and therefore will lack co-expression with any other gene in the set. 
When these gene expression profiles  are forced to be included in specific clusters, it leads to �cluster 
contamination� phenomena, which have to be avoided for obvious reasons.  In addition, the specificity 
of microarray data (such as the high level of noise or the link to extensive biological information) or 
also the mere number of expression profiles (that might run into the tens of thousands) have created the 
need for clustering methods specifically tailored to this type of data, in particular also challenges to 
cope with the required computational complexity.  A new clustering method, specifically developed 
with microarray data in mind, called adaptive quality-based clustering (AQBC-method), was proposed 
in  [DeSmet, 2002], where also a thorough discussion and examples can be found.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. AQBC is an iterative two-step approach. Intitally, all gene expression profiles are normalized to
have norm 1, and the 2-norm between two expression profile vectors is used as a distance measure
throughout. Using an initial estimate of the quality of the cluster, a cluster center is located in an area where
the density of gene expression profiles is locally maximal. The computational complexity of this first step is 
only linear in the number of expression profiles. In the second step, called the adaptive step, the quality of the
cluster, given the cluster center, found in the first step, is re-estimated so that the genes belonging to the 
cluster are, in a statistical sense, significantly coexpressed (higher coexpression than could be expected by
chance according to a significance level S). To this end, a bimodal and one-dimensional probability 
distribution (the distribution consists of two terms: one for the cluster and one for the rest of the data) is fitted
to the data using an Expectation-Maximization algorithm. Note that, the computational complexity of this step
is negligible with respect to the computational complexity of the first step. Finally, step one and two are 
repeated, using the re-estimation of the quality as the initial estimate needed in the first step, until the relative
difference between the initial and re-estimated quality is sufficiently small. The cluster is subsequently 
removed from the data and the whole procedure is restarted. Note that only clusters whose size exceeds a
predefined number are presented to the user. The Figure shows a typical output of our website INCLUSive
(see below), in which clustering results are summarized, including accession numbers and names of genes in
the cluster.  
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4.3. Statistical sampling theory algorithms  
Biodata feature 1 & 2 

 
In this Subsection, we summarize some recent developments in statistical sampling algorithms, such as 
Markov Chains Monte Carlo methods, and a new bi-clustering algorithm based on Gibbs sampling.  
 
4.3.1. Gibbs sampling, Markov Chains, EM algorithm  
 
Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method for optimization by sampling. The 
idea behind sampling methods for optimization is the following. In maximum likelihood methods, such 
as the EM algorithm14, we choose a set of parameters to describe our data by ω* = argmaxω P(D|ω),  in 
which D represents the data.  However, the likelihood function P(D|ω) contains much more information 
about the data than just the point estimate P(D|ω*). In fact, the posterior distribution, obtained from 
Bayes rule,  p(ω|D)=P(D|ω)P(ω)/P(D), provides a more accurate representation of which parameter 
values are good candidates to describe our data. For example, if p(ω|D) is multimodal, the modes 
provide very different models that describe the data well. Also, we can construct confidence intervals 
for the parameters based on this distribution while we do not get this information from an optimal point 
estimate. Thus it is advantageous to work with the full probability distribution instead of limiting 
ourselves to a point estimate. In some cases, it is possible to describe the posterior distribution 
analytically. However, for more complex models such as DNA sequence models, it is impossible to 
handle the probability distributions analytically. In that case, several methods are available to generate 
data according to a complex probability distribution. These are methods such as the Metropolis-Hasting 
algorithm (which is well-known as the foundation of the simulated annealing algorithm for global 
optimization), the hybrid MCMC method and Gibbs sampling (for references, see [Thijs, 2003]).  
Gibbs sampling (see e.g. [Casella, 1992]) is one of the best known Markov Chain Monte Carlo 
(MCMC) methods. Suppose we want to draw samples for the random variables x, y, and z, but that the 
marginal distributions or the joint distribution are hard to calculate. Suppose also that the conditional 
distributions p(x|y,z), p(y|x, z), and p(z|x, y) are available. Starting from initial values y(0) and z(0), the 
Gibbs sampler draws samples for the three variables in the following manner: x(t) ! p(x|y(t), z(t)); 
y(t+1) ! p(y|x(t),z(t)); z(t+1) !  p(z|x(t),y(t+1)),  for t = 0, 1, 2, . . .. It can be shown that the sequence 
y(0), z(0), x(0), y(1), z(1), x(1), . . . , y(k), z(k), x(k) constructs a Markov chain and that, as k " ∞, the 
distribution of the triplet (x(k), y(k), z(k)) converges to the true joint distribution p(x,y,z). Furthermore, 
the sequence x(0), x(1), . . . , x(k) itself is a Markov chain, and the distribution of x(k) converges to its 
true marginal distribution p(x) as k " ∞. We refer to [Thijs, 2001] [Thijs, 2002a] [Thijs, 2002b] [Thijs, 
2003] for more details and references and to Subsection 5.4 for an application of Gibbs sampling in 
motif detection.  
 
4.3.2. Bi-clustering  
 
Consider a microarray data set that contains n genes and m conditions and assume that a single 
bicluster is present in the data (see Figure 11 for an illustrative example). We introduce two vectors g =  
(g1 g2 . . . gn) and c = (c1 c2 . . . cm), whose elements are Bernoulli random variables indicating 
respectively whether the i-th gene and the j -th condition belong to the bicluster. Hereafter we refer to 
these vectors as the label vectors and the Bernoulli random variables that they contain as the labels. 
Our goal is to draw samples from the joint distribution p(g, c|D) of g and c conditioned on a discretized 
microarray data set D. In other words, we want to generate samples for every component in g and c 
from its respective marginal distribution p(gi|D) or p(cj |D). In the manner of Gibbs sampling, this can 

                                                 
14 Within a maximum likelihood estimation framework, using parametrized probability densities, the Expectation-
Maximization (EM) is a two-step iterative procedure for obtaining the maximum likelihood parameter estimates 
for a model of observed data and missing values (see [Hastie, 2001] or [Duda, 2001] for an exposition of EM). In 
the expectation step, the expectation of the data and missing values is computed given the current set of model 
parameters. In the maximization step, the parameters that maximize the likelihood are computed. The algorithm is 
started with a set of initial parameters and iterates over the two described steps until the parameters have 
converged. Since EM is a gradient ascent method, EM strongly depends on the initial conditions. Poor initial 
parameters may lead EM to converge to a local minimum. 
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be done by sampling iteratively from the full conditional distributions p(gi|gi*, c,D), for i = 1, 2, . . . , n 
and p(cj |g, cj*,D), for j = 1, 2, . . . , m, where gi* and cj* denote a label vector with all but the i-th gene 
and j-th condition label fixed. Because of the Bernoulli nature of the labels, these full conditional 
distributions will be binomial. However, the parameters of the binomial distributions cannot be easily 
determined without specifying the models of the data. For simplicity, we only consider the case of 
discretized (e.g. in grey or color scale bins, i.e. non-continuous) microarray data, which corresponds to 
multinomial distributions for the data. Let us assume that the data under study is preprocessed in such a 
way that the background data (the part of the data that does not belong to the bicluster) is generated by 
one single multinomial distribution characterized by l probabilities φi  , where l is the total number of 
bins used for discretization. The bicluster that we seek is a subset of the data where the genes behave 
similarly under each condition. To put this mathematically, we use a multinomial distribution to model 
the data under every condition in a bicluster, and we also assume that the multinomial distributions for 
different conditions of a bicluster are mutually independent. Said in other words, a bicluster pattern is 
an l times w probability matrix, where each column has l components (l is the number of bins used to 
discretize the data), and w is the total number of conditions in the bicluster (see Figure 11, where l=3 
and w=5).  
If we would have the  background model and the bi-cluster pattern model, we could calculate the 
likelihood of the complete data (which includes the observed data D and the labels of g and c).  After 
some tedious � but straightforward � calculations (see [Sheng, 2003] for details), one can calculate the 
conditional distributions p(gi|gi*, c,D), for i = 1, 2, . . . , n and p(cj |g, cj*,D), for j = 1, 2, . . . , m. The 
resulting expressions can be used in the following bi-clustering algorithm:  

1. Initialization: Randomly assign gene labels and condition labels. 
2. Fix the labels of the conditions. For every gene i, (i = 1, 2, ..., n), fix the labels for all the other 

genes, and 
a. Calculate the binomial distribution for the gene; 
b. Draw a label for gene i from the binomial distribution. 

3. Fix the labels of the genes. For every condition j, (j = 1, 2, ...,m), fix the labels of all the other 
conditions, and 

a. Calculate the binomial distribution for the condition; 
b. Draw a label for condition j from the binomial distribution. 

4. Go to Step 2 for a predefined number of iterations 
The Monte Carlo aspect of the Gibbs sampler, refers to the fact that the final positions of the bicluster 
are selected as the ones where the relative count of both the gene labels and the condition labels are 
larger than a certain predefined threshold (by averaging over the iterations after convergence of the 
Gibbs sampler has been reached, see [Sheng, 2003] for details). In Figure 11, we present an example 
that clarifies the whole procedure,  
 
There are several approaches to extend the algorithm to enable the detection of multiple biclusters. We 
choose to mask either the genes or the conditions selected for the found biclusters and perform the 
algorithm on the rest of the data. By masking, we mean that the gene or condition labels of all the 
found biclusters are permanently set to zero. In this way, genes or conditions retrieved for previous 
biclusters will not further be selected as candidate genes or conditions for any future bicluster, while 
the background model will still be calculated over all the possible positions in the whole data set 
including the positions of the masked genes or conditions. Note that this choice does allow the 
unmasked dimension of the biclusters to be selected multiple times. For example, if the genes are 
masked, a condition can still belong to multiple biclusters. In this way, the algorithm is iterated on a 
data set until no bicluster can be found for the unmasked part 15. 
We will illustrate biclustering with Gibbs sampling in Subsection 5.2, to discover, starting from 
microarray experiments,  groups of patients with different forms of leukemia, and find the genes that 
characterize each of these different forms of leukemia.   
 
 

                                                 
15 When no bicluster is present in the dataset, the algorithm should detect this. We do this as follows: We check in 
Step 4 of the algorithm the number of genes or conditions that belong to the bicluster; If one of them is zero, we 
reinitialize the algorithm and perform Gibbs sampling again. However, if after a predefined number of 
reinitializations (for example, ten in our implementation) the algorithm still does not succeed to reach 
convergence, we terminate the algorithm and consider that the data set does not contain a bicluster. 
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Figure 11. Clarification of the problem that is solved with biclustering. In this example, a pattern of 20 rows and
5 columns (see bottom right) was hidden in a 100 x 10 matrix (middle matrix), discretized using l=3 bins. The
pattern was described by 5 sharp independent multinomial distributions, while the background was generated
from a uniform multinomial distribution. The biclustering Gibbs sampler [Sheng, 2003] was run for 500
iterations. The left matrix shows the frequency with which every position in the data matrix was sampled as one
of the biclustering positions during the sampling procedure. The frequency is reflected by the brightness
associated to every position in the plot, where the two extremes, white and black, imply respectively relative
frequencies 1 and 0.  The vertical and horizontal outer bars that go with this matrix mark the row and column
positions of the embedded bicluster (the 20 x 5 true pattern of the bottom right figure) with a white tag (there are
20 white tags on the left most vertical bar and 5 on the lowest horizontal bar).  The vertical and horizontal inner
bars indicate the expected values of the labels, as estimated from the Gibbs samples. If they are higher than a
certain threshold (0.8 in this case), the corresponding matrix element is decided to belong to the pattern.  The
detected pattern is depicted in the upper right. From these pictures we see that all the columns where the
embedded pattern is located, were correctly found, and most of the embedded rows were recovered. In addition,
some of the rows that were not designed as the host of the embedded pattern were included in the resulting
bicluster, because the patterns in these rows happened to match the one that characterizes the rest of the found
bicluster. A more detailed look shows that there was a high variability in the biclusters retrieved at each
iteration. However, these biclusters overlapped with each other most frequently at the positions of our final
decision, which is illustrated in the left matrix.  This is a typical characteristic of Gibbs sampling, which presents
targets in terms of distributions rather than deterministic values. In this way, Gibbs sampling also avoids the
problem of local maxima that often hinders Expectation-Maximization. 
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5. Cases  
 

Come forth into the light of things 
Let nature be your teacher 

Wordsworth 
 
Having discussed some basic algorithms, we are now ready to discuss some (real-life) cases in which 
we have applied these numerical methodologies to learn something about the biology behind the data. 
First, in Subsection 5.1. we will show how PCA and hierarchical clustering can be used as a 
diagnostics tool starting from microarray data, to distinguish between two types of leukemia. Next, in 
Subsection 5.2., we show how our biclustering method manages to discover 3 different types of 
leukemia in another microarray data set, which nicely confirms some recent findings in the literature. 
Next, in Subsection 5.3, we illustrate how ABCQ can be used in knowledge discovery about the mitotic 
cell cycle in yeast. In Subsection 5.4., we illustrate the use of Gibbs sampling in motif detection, 
starting from microarray data, which is illustrated by a motif finding application in Arabidopsis 
thaliana.  

5.1. Leukemia diagnostics with PCA and hierarchical 
clustering  
 
Microarrays have revealed themselves as an important tool for disease management. Indeed, the global 
expression profile as measured by a microarray of a patient suffering from a specific disease can be 
used as a molecular fingerprint for that disease. The identification of such disease-specific fingerprints 
(e.g., expression profiles of tumor cell lines) can help in improving the diagnosis, staging and prognosis 
of a genetic disease.  Although the exact mechanisms of carcinogenesis are usually unknown, it is 
generally assumed that most cancers originate from genetic disorders. Distinct processes such as 
contact with carcinogens, viral infections, irradiation can induce mutations in the human genome. This 
can transform a normal cell into a tumor cell, induce its (uncontrolled) proliferation and finally lead to 
invasion and metastasis. Mutations leading to cancer can either occur in proto-oncogenes (genes 
involved in controlled cell proliferation and cell division), in tumor suppressor genes (encoding for 
inhibitors of uncontrolled cell proliferation), in genes linked with apoptosis (programmed cell death), 
genes linked with invasion and metastasis, and so on. These mutations can also induce changes in the 
expression levels of other genes (genes without mutations, but their expression levels are directly or 
indirectly controlled by the genes in which the mutations occur). It will be the collection of these 
disturbed expression levels that will determine the phenotype of the tumor. Using microarrays to 
measure all these expression levels will therefore be of great benefit to know, to determine and to 
understand the real (clinical) behavior of the tumor cells (with respect to prognosis, therapy response, 
extend of tumor spread, �). Each microarray experiment determines the expression level of all the 
genes (for which there are probes present on the array) of a specific cell. This gives, for each 
experiment, a vector with thousands of components (1 component for each probe present on the array). 
The determination of these expression levels can be repeated for tumor cells with different properties or 
from different classes, for example tumors with a different histopathological diagnosis. with a different 
therapy response, with a different prognosis (e.g., patients that will or will not develop distant 
metastases). One such a vector would for instance be the vectorized matrix that represents the 
microarray image  of Figure 2 (right). The vectors generated by these experiments can be arranged in 
an expression matrix (the rows contain the expression levels of a specific gene and the columns contain 
the expression levels of a specific patient, sample or tumor), an example of which is shown in Figure 9 
(after hierarchical clustering) or in Figure 15 (using only a grey scale with 3 bins). This expression 
matrix can now be used for further data analysis (feature selection, class prediction and class 
discovery). 
 
As an example, we will use a data set containing 72 patients with acute lymphoblastic leukemia (ALL, 
which we will call class 1) or acute myeloid leukemia (AML, called here class 2).  Peripheral blood or 
bone marrow samples of these patients were analyzed with an Affymetrix oligonucleotide array (with 
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about 7000 probes) (Golub et al., 1999). These measurements (7129 x 72 matrix) are publicly available 
(http://www-genome.wi.mit.edu/cgibin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43).  
The 72 patients were divided in two groups: 

1. The training set: containing the first 38 patients (27 with ALL and 11 with AML). 
2. The test set: containing the remaining 34 patients (20 with ALL and 14 with AML). 

We will refer to the entire data set (no distinction between training and test set) as the leukemia data 
set. The four steps we are going to consider in the analysis of these data are feature selection using 
PCA,  class prediction, class discovery and hierarchical clustering. Using PCA, we will select a limited 
number of features (a single feature can mathematically be described as a certain function of all the 
gene expression levels of one patient, resulting in exactly one number for each patient) that contain as 
much information as possible about a certain class distinction and subsequently use this features to do 
class prediction or discover. This selection also amounts to a reduction in dimensionality. PCA finds 
linear combinations of gene expression levels in such a way that these combinations have maximal 
spread (or standard deviation) for a certain collection of microarray experiments. In fact, PCA searches 
for the combinations that are most informative. These (linear) combinations are called the Principal 
Components for this collection of experiments and they can be found by calculating the eigenvectors of 
Σ (= A.A�/(n-1), covariance matrix of A � note that in this formula A has to be centralized, i.e., the 
mean column vector of A has to lie in the origin), where A is the expression matrix (m x n matrix � 
collection of n microarray experiments where m gene expression levels were measured). The 
eigenvectors or Principal Components with the largest eigenvalues also correspond to the linear 
combinations with the largest spread in the collection represented by A. For a certain experiment, the 
linear combinations (or features) themselves can be calculated by projecting the expression vector (for 
that experiment) onto the Principal Components. Often, we will only use the Principal Components 
with the largest eigenvalues. So let 

- E being the m x 1 matrix expression vector for a certain microarray experiment (where also m 
gene expression levels were measured); 

- P being the  m x p matrix, the columns of which are  the p Principal Components associated 
with the p largest eigenvalues for A; 

- F  the p x 1 vector  given by F=P�.E. 
F contains the p features (or linear combinations) for the microarray experiment with expression vector 
E according to the first p Principal Components of the collection of microarray experiments 
represented by A (said in other words, P.F=(P.P�).E is the orthogonal projection of the expression 
vector E into the dominant principal subspace of dimension p).   
 
For the leukemia data set (m=7129), we have calculated the two (p=2; reduction of dimensionality 
from 7129 to 2) first Principal Components of the training set (n=38) and determined the associated 
features (two for each sample) for the samples in the training AND test set. The results are shown in 
the Figure 12. Note that for this feature selection method the class distinction does not have to be 
known in advance, making this procedure suitable to be used in combination with class discovery.  
In a clinical environment it is important to be able to do predictions (with respect to for example 
histopathological diagnosis, prognosis and therapy response), using microarray experiments, for new 
individual patients. This is the problem of class prediction. Here a prediction must be made for samples 
or patients for which class membership is not known in advance. Based on a set of features and a 
training set (experiments done in the past - for which class membership is already known), a model 
(like a Neural Network, a Support Vector Machine, Linear Discriminant Analysis, �) has to be 
trained. This model can then be used to classify new patients (prediction of class membership).  
For the leukemia data set, we used Linear Discriminant Analysis (Fisher) to construct a linear model 
after Principal Component Analysis . We used the training set to determine the parameters of this 
model (training � determination of a line in Figure 12 (b) that optimally separates the patients of the 
training set in ALL (*) and AML (*) patients). Then, we used this model to classify the patients of the 
test set, which resulted in 3 misclassifications. This is shown in the Figure 12 (b) as well. 
Using the extensive arsenal of clinical and morphological parameters, malignant processes can be 
divided in different diagnostic categories or entities with similar clinical behavior. In most cases, these 
categories guide the clinical management. It is however possible that rearranging the diagnostic 
categories might result in groups of patients with less clinical variability, which would allow us to 
refine the clinical management.With cluster analysis it is possible to automatically find different 
classes or clusters in a group of microarray experiments without knowing the properties of these classes 
in advance. A cluster, in general, will group microarray experiments (or the associated patients) with a 
certain degree of similarity. The distinct classes or clusters generated by the clustering procedure will 
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We also performed hierarchical clustering on the patients of the entire leukemia data set since this is 
the method that is commonly used in literature. No Principal Component Analysis is necessary before 
starting the procedure. This technique iteratively groups the two most similar (according to a certain 
distance measure like the Euclidean distance or the Pearson correlation coefficient) elements in the 
data, creating a tree structure. Dependent on the level where the tree is cut, clusters are defined. The 
result, using the patients of the leukemia data set, is presented in Figure 14. Note that the largest part of 
the patients with AML is grouped in the right side of the tree structure (see the branch where the arrow 
is pointing). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5.2. Discovering leukemia classes by Gibbs sampling 
biclustering  
 
In this example (which is some recent work [Sheng, 2003] for more details on the algorithm and 
results), we show how the biclustering algorithm of Section 4 can lead to interesting discoveries of 
genetic patterns shared by leukemia patients.  The data set we start from is a leukemia data set, 
described in [Armstrong, 2002].  It consists of expression data from Affymetrix chips for 12,600 genes 
collected from 72 leukemia patients, of which 28 were diagnosed with acute lymphoblastic leukemia 
(ALL), 20 were mixed-linkage leukemia (MLL) patients, and 24 were acute myelogenous leukemia 
(AML) patients. The task here is to identify patients that share similar expression behavior over a 
subset of genes. Because data points with low values are noisy and non-reproducible, a threshold of 
100 was put on the original data. A ceiling of 1,600 was also placed because of saturation effects. Next, 
the variation of each gene along all the patients was examined. Since genes that have consistent 
behavior over all the patients are not of much interest, only the first 15 percent of genes with the 
highest standard deviation were selected for further analysis. In this way, the size of the data set was 
reduced to 1887 genes by 72 patients. This reduced data set was then discretized according to the equal 
frequency principle. That is, for every gene, we first put its expression data over all the patients in an 
ascending order, and then divided the data points into a desired number of bins, (which is 3 in the case 
presented below), in a way such that the number of data points in every bin is the same. Note that the 
use of the equal frequency principle enables the application of the one-multinomial background 
discussed in Subsection 4.4.2. We use data from the last three patients of every category to construct a 
test data set (so the test data set consists of 9 patients, three for each category AML, ALL and MLL). 
Data from the rest of the patients (i.e. 72-9 = 63 patients) were used as a training set. By masking the 
patients found after each run, the algorithm succeeded in discovering three biclusters one after another 
for the training data set. The algorithm stopped after discovering three biclusters. Figure 15 
demonstrates the ability of our algorithm to group patients based on their expression behavior over a 
subset of patients. Furthermore, the patients collected in every bicluster came from the right category. 
More specifically, (a) the first bicluster selected 19 patients, all of them out of the 25 AML patients in 

 

 
Figure 14: Hierarchical clustering for the patients of the leukemia data set. The terminal branches represent
the individual patients (ALL/AML + number). Note that most patients with AML (19 out of 25) are grouped 
in the branch where the arrow is pointing. 
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the training set, and found 80 genes to be �relevant�; (b) the second bicluster included 18 (out of 21) 
ALL patients, and 87 genes; (c) the third bicluster consisted of 14 (out of 17) MLL patients and 62 
genes. 
This example clearly shows the potential of the Gibbs sampling based biclustering  technique for novel 
class discovery. As we will also elaborate on in Section 6, the finer the class distinction is, the more the 
treatment of the disease can be fine tuned and individualized.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
            
               
            
   
 
 
 
 
 
 
 
 
 
 
Figure 15. (a, top left)  (b, top right) (c, bottom left), (d, bottom, right); Figure (a)-(b)-(c) show patient (rows) versus gene 
expression levels (columns). The gene expression levels are encoded in 3 grey scale bins. Figure (a): The first bicluster 
selected 19 patients, all of them out of the 25 AML patients in the training set, and 80 genes that can be considered to be
�relevant� for AML; In the upper plot of Figure (a), we clearly see the highly consistent gene pattern over those 80 genes,
for the 19 patients in the AML cluster (it almost looks like a rank one matrix !). The lower plot in Figure (a) shows the
gene pattern over those 80 genes, for the 63-19=44 remaining patients in the training set. (b) The second bicluster
discovered 18 (out of 21) ALL patients, and found 87 genes to be characteristic for this class; The upper plot in (b) shows
the gene expression patterns over those 87 genes (again, this looks very much like a rank one matrix !);  The lower plot
contains the expression patterns over the 63-18=45 remaining patients in the training set; (c) The third bicluster consisted
of 14 (out of 17) MLL patients and 62 genes.The upper plot shows the gene expression profile over the 62 genes, while the
lower one for the same genes, for the 49 remaining patients.  Figure (d) Principal component analysis plot (first 3
dominant components) of ALL (cluster to the right), MLL (cluster in the middle) and AML (cluster to the left) carried out
using 8700 genes (see [Armstrong, 2002]) for details).  

 
 

5.3. AQB-clustering gene express
of yeast  
 
AQBC (Adaptive Quality Based Clustering) was tested 
in [Cho, 1998] (see also http://cellcycle-www.stanfo
synchronized culture on an Affymetrix chip. The cell cy

 

ion in the mitotic cell cycle 

on an expression profile experiment described 
rd.edu) studying the yeast cell cycle in a 
cle of yeast is a fundamental biological system 



 27

as it reveals the core processes involved in cell replication and growth in general. This knowledge is 
essential to the understanding of the aberrant processes involved in tumorigenesis and carcinogenesis. 
This data set can be considered as a benchmark and contains expression profiles for 6220 genes over 17 
time points taken at 10-min intervals, covering nearly two full cell cycles. The majority of the genes 
included in the data set have been functionally classified, which makes this data set an ideal candidate 
to correlate the results of new clustering algorithms with the biological reality. Our pre-processing 
included the following steps: (1) data corresponding to the 90 and 100-min measurements were 
removed; (2) the 3000 most variable genes were selected and (3) the gene expression profiles were 
normalized. The main results of the cluster analysis with AQBC (minimal number of genes set to 10 
and the significance level to 0.95) are summarized in Figure  16. 
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426 energy 
transport facilitation 
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196 cell growth, cell division and DNA 
synthesis 

48 5 

4 

 

149 protein synthesis 
cellular organization 

71 
107 

50 
19 

5 

 

159 cell  rescue, defense, cell death and 
ageing 

20 4 

6 

 

171 cell growth, cell division and DNA 
synthesis 

76 24 

9 

 

78 cell growth, cell division and DNA 
synthesis 

23 4 

37 

 

11 metabolism 9 6 

Figure 16. Main results of AQBC on the mitotic yeast cycle benchmark data set.  The first column is 
the cluster number. The plots in the second column show, for each cluster, the normalized
expression profiles (15 points on the x-axis) for each gene belonging to that cluster. The red line is 
the �average� expression profile. For the biological validation of this result, we mapped the genes in 
each cluster to the top-level functional categories in the Munich Information center for Protein
Sequences (MIPS) Comprehensive Yeast Genome Database. For each cluster we calculated P-
values for observing the frequencies of genes in particular top-level functional categories using the 
cumulative hypergeometric probability distribution [see [De Smet, 2002] [Moreau, 2002] for
details). Note that we were able to determine the role of every cluster presented within the yeast cell 
cycle context and to correlate this role with the behavior of the average profiles of the clusters. We
have also found several protein complexes where nearly all members belonged to the same cluster. 
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5.4. Motif detection  
 
5.4.1. Motifs and regulatory elements 

Biodata feature 2 
 
We will now elaborate on how to identify genetics mechanisms that govern the activation of genes in 
an organism.  As explained briefly in Section 2, The DNA not only contains genes, but also all kinds of 
other short sequences, such as regulatory motifs (e.g. transcription factor binding sites) in the promotor 
regions of several genes.   
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Figure 17. Short DNA patterns  in the neighborhood of the genes serve as switches that control gene expression.
Unraveling the mechanisms that regulate gene activity in an organism is a major goal of molecular biology.  A
main cause of coexpression of genes is that these genes share the same regulation mechanism at the sequence
level. Such genes are called co-regulated. Specifically, some control regions (called promoter regions) in the
neighborhood of the genes will contain specific short sequence patterns, called binding sites, which are 
recognized by activating or repressing proteins, called transcription factors. In such a situation, we say that the
genes are transcriptionally regulated. Switching our attention from expression data to sequence data, we consider 
algorithms that discover such binding sites in sets of DNA sequences from coexpressed genes. We analyze the
upstream region of those genes to detect patterns, also called motifs, that are statistically overrepresented when
compared to some random model of the sequence.  
he detection of overrepresented patterns in DNA or amino-acid sequences is called motif finding.  
igure 18 provides a survey picture of the different steps for motif finding starting from microarray 
ata.  Motif finding is a non-trivial challenge. First of all, a motif typically consists of a limited number 
f nucleotides (e.g. 10) out of more than 3 billion nucleotides for instance in the human genome. Next, 
t is important to note that motifs can occur on both strands of the double helix. Transcription factors 
ndeed bind directly on the double-stranded DNA and therefore motif detection software should take 
his fact into account. In addition, sequences could have either zero, one, or multiple copies of a motif 
s illustrated in Figure 19. Finally, there may be several special types of motifs such as palindromic 
otifs, which are a special type of transcription factor binding site from a computational point of view 

s it is a subsequence that is exactly the same as its own reverse complement (e.g. TCACGTGA). 
nother complication is formed by gapped motifs or spaced dyads, consisting of two smaller conserved 

ites separated by a gap or spacer. The spacer occurs in the middle of the motif because the 
ranscription factors bind as a dimer. This means that the transcription factor is made out of two 
ubunits that have two separate contact points with the DNA sequence. The parts where the 
ranscription factor binds to the DNA are conserved but are typically rather small (3-5bp). These two 
ontact points are separated by a non-conserved gap or spacer. This gap is mostly of fixed length but 
ight be slightly variable (see [Thijs, 2003] for details).  
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o illustrate the complexity, we look at an example in baker's yeast Saccharomyces
erevisiae. Figure ????  gives a schematic representation of the upstream sequences
rom 11 genes in  S. cerevisiae, which are regulated by the Cbfl-Met4p-Met28p
omplex and Met31p or Met32p in response to methionine.  

-- FIGURE 5 ABOUT HERE --- 

he consensus (which is the dominant DNA pattern describing the motif) for these
inding sites is given by 
CACGTG for the Cbfl-Met4p-Met28p complex  (i.e. 7 letters in the 3 billion of the
uman DNA !!) and AAAACTGTGG for Met31p or Met32p. A so-called logo
epresentation of the aligned instances of the two binding sites is shown in Figure ???. 

A1234
Z4321

Clustering

GenBank

start

Blast

start

Gibbs sampler

Microarrays
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Z4321

Clustering
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Blast

start

Gibbs sampler

Microarrays

Figure 18. High-level description of data analysis for motif finding starting from microarray data.  The cycle
starts in the upper left corner, where data are generated from scanned microarray images. After proper
quantification and preprocessing, the data are available for clustering in a data matrix, whereupon clustering
techniques are applied to detect clusters of so-called co-regulated genes (genes for which the time response 
looks similar).  Three of these clusters are visualized. Next, we concentrate on one cluster, in which the different
genes are enumerated (see the arrow) and apply motif finding algorithms to detect sequences of control regions 
of the genes in this specific cluster. As these motifs are in general unknown, motif finding algorithms detect 
statistically overrepresented DNA patterns. The motif is visualized on a motif plot, in which the size of the
letters is proportional to the probability of having a certain nucleotide at a certain location. 

 

 
 
 

 

 

Figure 19. Schematic representation of a set of upstream sequences containing 0, 1, or more copies of a specific
motif. In the simplest model, we have a set of DNA sequences where each sequence contains a single copy of
the motif of fixed length. Except for the motif, a sequence is described as a sequence of independent nucleotides
generated according to a single discrete distribution θ0=(q0

A, q0
C, q0

G,q0
T), which  is called the background

model. The motif θW itself is described by what we call a position weight matrix, which is a 4 x W matrix with
elements  qi

b, I=1,�,W and b=A,C,G,T, in which column i is the probability distribution for position i.   If we
known the location ai  of the motif in a sequence Si , the probability P(Si |ai, θW, θ0) of this sequence, given the
motif position, the motif matrix, and the background model can be easily calculated (we refer to [Thijs, 2003]
for details).  For a set of sequences, the probability of the whole set S= (S1,�,SN)  given the alignment (i.e., the
set of motif positions), the motif matrix, and the background model can also be computed. 
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Finally, cooperatively binding factors and modules are currently the topic of a lot of research: When 
only one of the transcription factors binds, there is no activation but the presence of two or more 
transcription factors activates the transcription of a certain gene (this is like a logical AND gate). If we 
translate this to the motif finding problem we could either search for individual motifs and try to find, 
among the list of possible candidates, motifs that tend to occur together. Another possibility is to search 
for multiple motifs at the same time. 
Obviously, regulatory elements play a central role in the study of biological sequences and many 
databases are available to explore known regulatory elements. The following table provides  a list of 
databases of promoters and gene regulation that are accessible online. Most of these sites are also 
portals to specific tools for the analysis of regulatory mechanisms. 
 
 

 
 
 
 
 
 
  Table 3: Web repositories of regulatory elements.  
 
5.4.2. Algorithms for motif finding  
 
Algorithms to find regulatory elements can be divided into two classes: (1) methods based on word 
counting and (2) methods based on probabilistic sequence models. The word counting methods analyze 
the frequency of oligonucleotides in the upstream region and use intelligent strategies to speed up 
counting and to detect significantly over-represented motifs. These methods then compile a common 
motif by grouping similar words. Word counting methods lead to a global solution as compared to the 
probabilistic methods. We refer to [Moreau, 2002b] for a literature survey.  
 
The probabilistic methods represent the motif by a position probability matrix and they assume that the 
motif is hidden in a noisy background sequence. The simplest model is depicted in Figure 18.  The 
parameters of the motif and background model are pooled in the parameter vector θ = (θ0, θW).  
There are basically two approaches for motif finding based on these probabilistic models:   

- The idea of the Expectation-Maximization algorithm for motif finding is to find 
simultaneously the motif matrix, the alignment position, and the background model that 
maximize the likelihood of the weights and alignments.  

- The idea of Gibbs sampling for motif finding extends Expectation-Maximization in a 
stochastic fashion by not looking for the maximum likelihood configuration but generating 
candidate motif matrices and alignments according to their posterior probability given the 
sequences. 

We will only be discussing the Gibbs sampling methodology here (see [Moreau, 2002b] for a more 
complete discussion, including EM based algorithms).  
In Gibbs sampling for motif finding, we generate candidate motif matrices and alignments according to 
their posterior probability given the sequences. Let�s first explicit further how sampling can be applied 
to motif finding. The idea is to generate plausible motifs and alignments by drawing samples (θ(i) , A(i) ) 
from the posterior p(θ , A| S). From these samples, we can then track a best motif matrix or alignment 
or compute an average motif matrix or alignment. However, we need to make an important semantic 
distinction. Indeed, the alignment A is a property of the data, not of the model. But, while the set of 
sequences S is available, the alignment is unknown. If the alignment was available in the form of 
sequence labels, our task of estimating the motif matrix would be greatly facilitated. So, when we set 
up the likelihood function P(S|A, θ), the alignment is in fact missing from our sequence data. 
Therefore, recovering the alignment is called the missing data problem. Moreover, recovering the 
alignment is often less important than estimating the model parameters θ. We could thus try to set up 
directly the likelihood P(S|θ). But writing down this likelihood function directly is next to impossible. 
It is only by introducing the alignment that we get a simple expression for our likelihood. Simplifying 
the likelihood by introducing new variables is called the data augmentation method. 
 

Database URL 
EPD www.epd.isb-sib.ch/  
TRANSFAC www.gene-regulation.de/  
PlantCARE sphinx.rug.ac.be:8080/PlantCARE  
PLACE www.dna.affrc.go.jp/htdocs/PLACE  
TRRD www.bionet.nsc.ru/  
SCPD cgsigma.cshl.org/jian/  
HPD zlab.bu.edu/~mfrith/HPD.html  
COMPEL compel.bionet.nsc.ru/compel/  
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For motif finding, a Gibbs sampler is needed to sample from P(θ,A|S). However, many variables are 
now involved, which leaves a great deal of leeway in how the exact sampling is set up. The derivation 
of the exact algorithm is very technical (see [Thijs, 2001] [Thijs, 2002a] [Thijs, 2002b] [Thijs, 2003]) 
for extensive treatment). Shortly said, the algorithm is basically the Markov chain described above, but 
the computation of the probability distributions involves the use of multinomial probability 
distributions (for the probability of the data based on the likelihood function presented previously and 
on the motif matrix and the background model) and of Dirichlet probability distributions (for the 
probability of the parameters of the motif matrix).  
The following table gives an overview of some of the methods used for motif finding that can be 
accessed online or where the software is available for download. 
 

Package URL 
RSA tools  www.ucmb.ulb.ac.be/bioinformatics/rsa-tools/ 
YMF  abstract.cs.washington.edu/~\blanchem/cgi-bin/YMF.pl  
Consensus ural.wustl.edu/softwares.html 
MEME     meme.sdsc.edu/meme/website/  
Gibbs Sampler bayesweb.wadsworth.org/gibbs/gibbs.html 
AlignACE atlas.med.harvard.edu 
 BioProspector bioprospector.stanford.edu  
INCLUSive  http://www.esat.kuleuven.ac.be/inclusive  

 
 Table 4: Websites with algorithms for motif finding  

 
 
5.4.3. Robust motif finding: Motif sampler  
 
In a series of papers [Thijs, 2001] [Thijs, 2002a] [Thijs, 2002b] [Marchal, 2003] [Aerts, 2003] 
[Coessens, 2003] and a recent PhD [Thijs, 2003], we have introduced some important  modifications to 
the original Gibbs sampling method. First, a probabilistic framework was used to estimate the expected 
number of copies of a motif in a sequence. Since both the microarray experiment and the clustering are 
subject to noise, only a subset of the co-expressed genes is actually coregulated. Furthermore, in higher 
organisms, regulatory elements can have several copies to increase the effect of the transcriptional 
binding factor in the transcriptional regulation.  
When searching for possible regulatory elements in such a set of sequences we should take into 
account that the motif will only appear in a subset of the original data set or could have multiple copies. 
We therefore want to develop an algorithm that distinguishes between the sequences in which the motif 
is present and those in which it is absent. We reformulated the probabilistic sequence model in such a 
way that the number of copies of the motif in each sequence can be estimated. Second, we introduced 
the use of a higher-order background model based on a Markov chain. The use of a higher-order 
background model is justified by the fact that Markov models have been used extensively in the state-
of-the-art gene detection software. Starting from the ideas incorporated in these gene and promoter 
prediction algorithms, we developed a background model based on a Markov process of order m. This 
means that the probability of the nucleotide b at a certain position  in the sequence depends on the m 
previous bases in the sequence. A first order model hence has a 4 x 4 transition matrix. An example can 
be found in Figure 20. Important to know is that the background model can be either constructed from 
the original sequence data or from an independent data set. The latter approach is more sensible if the 
independent data set is carefully created, which means that the sequences in the training set only come 
from the intergenic region and thus do not overlap with coding sequences. Nevertheless the algorithm 
can also be used for other organisms by building the background model from the input sequences.  
Background models for several organisms such as Arabidopsis thaliana, S. cerevisiae, E. coli, 
Helicobacter pylori, Caenorhabditis elegans, have been compiled and can be found at 
http://www.esat.kuleuven.ac.be/~thijs/Work/MotifSampler.html ). 
Integrating the two proposed modifications into the original Gibbs sampling algorithm for motif 
finding, lead to our implementation, called Motif Sampler. The input of the Motif Sampler is a set of 
upstream sequences. In the first step of the algorithm the higher-order background model is chosen. 
The background model can be pre-compiled or it can be calculated from the input sequences. The 
algorithm then uses this background model to compute, for each segment of length W in every 
sequence the probability that the segment was generated by the background model. Second, the 
alignment vector and the corresponding motif model are initialized. In the next step, the actual core of 
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the sampling procedure starts. The algorithm loops over all sequences and the alignment vector for 
each sequence is updated. First, the motif model is calculated based on the current alignment vector. 
This estimated motif model is used to compute for each segment of length W in the selected sequence a 
weight that is the ratio of the probability that the segment is generated by this motif model divided by 
the probability that the segment is generated by the background model. Finally, a new alignment vector 
is selected by taking samples from the normalized distribution of weights over all segments in the 
given sequence. This procedure is repeated until the motif model has converged. The implementation 
of our motif finding algorithm is part of our website [Thijs, 2002a] [Coessens, 2003] and is accessible 
through a web interface: http://www.esat.kuleuven.ac.be/inclusive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 

ACGCGGTGTGCGTTTGACGA

ACGGTTACGCGACGTTTGGT

ACGTGCGGTGTACGTGTACG

ACGGAGTTTGCGGGACGCGT

ACGCGCGTGACGTACGCGTG

AGACGCGTGCGCGCGGACGC

ACGGGCGTGCGCGCGTCGCG

AACGCGTTTGTGTTCGGTGC
ACCGCGTTTGACGTCGGTTC

ACGTGACGCGTAGTTCGACG

ACGTGACACGGACGTACGCG

ACCGTACTCGCGTTGACACG

ATACGGCGCGGCGGGCGCGG

ACGTACGCGTACACGCGGGA

ACGCGCGTGTTTACGACGTG

ACGTCGCACGCGTCGGTGTG

ACGGCGGTCGGTACACGTCG

ACGTTGCGACGTGCGTGCTG
ACGGAACGACGACGCGACGC

ACGGCGTGTTCGCGGTGCGG

A
CGT

%

Positio
n

 
Figure 20: Example of a first order Markov chain model of  DNA. The transition matrix M in the upper left
corner has as its element (i,j) representing the probability that nucleotide i (A=1, C=2, G=3, T=4) follows
immediately after nucleotide j.  Let the vector v(0) be a 1 x 4 vector with an initial distribution of A,C,T,G (in
this example, v(0)=[1 0 0 0], i.e. we always start up with an A). By iterating v(k+1) = T v(k), as k " ∞, we
find the stationary distribution, which in this case is  v(∞)=[0.1188 0.2788 0.3905 0.2119], which is the
eigenvector of M corresponding to the largest eigenvalue, which is 1. The green and red encircled positions in
the lower right figure, represent the distribution of the letters A-C-T-G, that could have generated the samples
encircled in green and red in the sequences to the left.  Higher-order Markov models are based on the same
principle and probabilistic matrix representation.  
 

 
       A             C          G          T 
A  0.0643     0.8268    0.0659    0.0430
C  0.0598     0.0484    0.8515    0.0403
G  0.1602     0.3407    0.1736    0.3255
T  0.1507     0.1608    0.3654    0.3231

0.1188 0.0643 0.8268 0.0659 0.0430 0.1188
0.2788 0.0598 0.0484 0.8515 0.0403 0.2788

.  =           
0.3905 0.1602 0.3407 0.1736 0.3255 0.3905
0.2119 0.1507 0.1608 0.3654 0.3231 0.2119

T
     
     
     
     
          
     
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In order to illustrate the increased robustness of  Gibbs sampling for motif finding, when using a 
higher-order Markov background model, we have taken a a data set of coregulated genes from plants 
[Thijs, 2001] . The data set consists of 33 genes known to be regulated in part by the G-box 
transcription factor, which is linked to the light response of plants. This set of 33 genes could be one 
cluster obtained after clustering a gene expression profile matrix. In order to experimentally verify the 
robustness of our algorithm, we add more and more noisy sequences that do not contain an active 
motif.  We can observe that the performance of the higher-order algorithms is more robust to the 
addition of noisy sequence than that of the zero-order algorithm as is illustrated in Figure 21.   
 
 
 
 
 

 
 

Figure 21: We see how the total number of times the G-box motif is found in 10 repeated runs, and this for three 
different background models (a 3rd-order intergenic model, a 3rd-order sequence model and a single-nucleotide 
frequency model, based on a reference set or on the data only). As we can clearly see, the performance of Gibbs
sampling for the 0-th order model degrades quite rapidly as a function of added noise sequences, while up to 30
noise sequences can be added, before the motif is less successfully found when higher-order background models 
are included. This is an example where a priori biological information (in this case, knowledge of background
model of the organism) is exploited to robustify an algorithm. 
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5.3.4. INCLUSive: A software platform for motif finding 
 

Biodata feature 4& 5 
 
The tight link that exists between the clustering of gene expression profiles and the subsequent motif 
finding, led to the development of a web tool, called INCLUSive, which stands for INtegrated 
CLustering, Upstream sequence retrieval, and motif Sampling and which is available at 
http://www.esat.kuleuven.ac.be/inclusive [Thijs, 2002a] [Aerts, 2003] [Coessens, 2003].  Analysis of 
microarray experiment is not restricted to a single cluster experiment. Inferring ``biological 
knowledge'' from a microarray analysis usually  involves a complete analysis going from 
preprocessing, sequential use of distinct data preparation steps to the use of different complex 
procedures that make predictions on the data. Clustering predicts whether genes behave similarly while 
motif finding aims  at retrieving the underlying mechanism of this similar behavior. These data-mining 
procedures make thus predictions about the same biological system. These predictions are in the best 
case consistent with each other but they can also contradict each other. Combining these methods into a 
global approach therefore increases their relevance for biological analysis. Moreover, this integration 
also allows the optimal matching of the different procedures (such as the quality requirements in 
adaptive quality-based clustering that reduce the noise level for Gibbs sampling for motif finding). 
Furthermore, such global approaches require extensive integration at the information technology level. 
Indeed, as is often underestimated, the collection of data from multiple data sources and transformation 
of the output of one algorithm to the input of the next algorithm are often tedious tasks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 22: Output of motif scanner: Within the probabilistic 
methods the motif is represented as a position probability 
matrix of dimensions 4xW, where W is the length of the 
motif. Each column in the matrix is discrete distribution 
over the four nucleotides A, C, G and T and each entry in 
the column gives the probability of finding a given 
nucleotide at that position in the motif. The possible motifs 
are represented and can be ranked according to a calculated 
probability. A logo represents the frequency of each 
nucleotide at each position, the relative size of the symbol 
representing the relative frequency of each base at this 
position while the total height of the symbols representing 
the magnitude of the deviation from a uniform 
(noninformative) distribution. 
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As a final example of motif detection, in Table 5, we show the results of motif finding starting from  
microarray experiments on the response to mechanical wounding of the plant Arabidopsis thaliana. 
The microarray consists of 150 genes related to stress response in plants [Reymond, 2000]. The 
experiment consists of expression measurements for those 150 genes at 7 time points following 
wounding (after 30 min, 60 min, 90 min, 3 h, 6 h, 9 h, and 24 h). The expression data was clustered 
using adaptive quality-based clustering with a significance level of 95 %.  Four clusters where 
identified that contained at least 5 genes and those were selected for motif finding. The Motif Sampler 
was used to search for 6 motifs of length 8 bp and for 6 motifs of length 12 bp. A background model of 
order 3 was selected. The analysis was repeated 10 times and only the motifs identified in at least 5 
runs were retained. Table 5  presents the motifs found. 
 
Cluster Consensus motif Runs PlanCARE Description 
1 
[ 11 seq.]  

TAArTAAGTCAC 
 
ATTCAAATTT 
CTTCTTCGATCT 

7/10 
 
8/10 
5/10 

TGAGTCA 
CGTCA 

ATACAAAT 
TTCGACC 

Tissue specific GCN4-motif 
MeJA-responsive element 
element assoc. to GCN4-motif 
elicitor responsive element 

2 
[ 6 seq.]  

TTGACyCGy 
 
mACGTCACCT 

5/10 
 
7/10 

TGACG 
(T)TGAC(C) 

CGTCA 
ACGT 

MeJa responsive element 
elicitor responsive element 
MeJA responsive element 
Abcissic acid response element 

3 
[ 5 seq.]  

wATATATATmTT 
TCTwCnTC  
ATAAATAkGCnT 

5/10  
9/10 
7/10 

TATATA  
TCTCCCT  

- 

TATA-box like element 
TCCC-motif,light response element 
- 

4 
[ 5 seq. ]  

yTGACCGTCCsA 
 
 
 
 
 
CACGTGG 
 
GCCTymTT 
AGAATCAAT 

9/10 
 
 
 
 
 
5/10 
 
8/10 
6/10 

CCGTCC 
 

CCGTCC 
 

TGACG 
CGTCA 

CACGTG 
ACGT 

- 
- 

meristem specific activation of H4 
gene 
A-box, light or elicitor responsive 
element 
MeJA responsive element 
MeJA responsive element 
G-box light responsive element 
Abcissic acid response element 
- 
- 

 
Table 5. Results of the motif search in four clusters from a microarray experiment on mechanical wounding in 
Arabidopsis thaliana [Reymond, 2000] for for the third-order background model. In the first column, the cluster is 
identified together with the number of genes it contains. The second column gives the consensus of the motif 
found. The consensus of a motif is the dominant DNA pattern in the motif described using a degenerate alphabet, 
in which  capitals are for strong positions while lower letters are for degenerate positions (e.g. m=A/C, r = A/G, 
s=C/G , w=A/T, y=C/T).  The third column gives the number of times this motif was found in the 10 runs. The 
fourth column gives matching known motifs found in the PlantCARE database [Lescot, 2002], if any. Finally, the 
last column gives a short explanation of the matching known motifs. The motifs ATAAATAkGCnT, GCCTymTT 
and AGAATCAAT are not contained in PlantCARE. This could lead to a biological validation of the fact that 
these are candidate motifs, as yet undiscovered.  
   

6. Delphi�s oracle: Perspectives for the post-genome 
era  
 
As we will see, Jupiter (technology) will generate an exponentially  increasing amount of data, Mars 
(algorithms and information technology)  will drive us towards systems biology and increasing levels 
of integration, and Venus (biological organisms) will get modified once we have implemented systems 
for computational biomedicine !  In this Section, we present some visionary views and potential future 
perspectives on technology, algorithms, systems biology and computational biomedicine.  
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6.1.Technology for  �- omics� and �-omes� 
 
Bioinformatics is much more than we have been describing so far.  We have concentrated on 
transcriptomics, which basically studies the relation between the DNA sequence and gene expression 
profiles over conditions or patients, starting from microarray observations. Incredible as it may seem, 
DNA sequencing and transcriptomics are only the first �minor� waves of a new data flood that is 
awaiting us.  In contrast to the fact that (soon) the sequence of an estimated 30000 human genes will be 
known, so far only a few thousand proteins have been identified, a number that is expected to increase 
most rapidly.  As we have seen in Section 2, proteins are built from 20 amino acids. Proteomics (see 
e.g. [Ezzel, 2002] for a popular account and the series of papers on Proteomics in Nature Insight in 
Nature, Vol. 422, March 13, 2003, pp.193-237.) stands for three main challenges: identifying all the 
proteins that are made in a given cell, tissue or organism; determining how those proteins join forces to 
form networks akin to electrical circuits; outline the precise 3D-structure of the proteins, as this is 
extremely relevant to discover targets for drugs as the structure largely determines their potential 
functional associations with other macromolecules16.  Unfortunately (or luckily enough?), the proteome 
is much more complicated that the genome ! There is for instance no single human proteome: the 
pancreas makes a very different set of proteins than the brain does, for instance, and many external 
conditions and �triggers� can affect the type of proteins that the body produces. Listing human proteins 
takes you just so far, but to understand what proteins do in a body, and to develop useful drugs, one 
needs to unravel how the mix of proteins varies from one cell type to another, and within a cell as 
conditions change ! By integrating functional genomic and proteomic mapping approaches, biological 
hypotheses can be formulated with increasing levels of confidence. The availability of complete 
genome sequences for many organisms, will initiate an evolution from the classical reductionist 
approach of studying one gene at a time, to a more global and integrative approach that considers all 
genes at once !  Maps describing different aspects of protein function are to be compiled in what could 
be considered a �biological atlas� (see Figure 23 that is borrowed from [Vidal, 2001]).  There are many 
more �-omes� to come17 !   Technology is also rapidly developing here, with about the same time 
constants as those in PC-technology (i.e. new (smaller, faster, more accurate) generations of equipment 
every 2 to 3 years), from the current 2D-gel electrophoresis, over mass spectroscopy to (maybe in the 
near future) nano-protein arrays, each of which will generate Gb of data! 
 
Not included in Figure 23, but also very important for the near future is the development of 
metabolomics. This is the post-genomic technology that seeks to provide a comprehensive profile of all 
metabolites in a biological sample. This complements the mRNA profiles (that we have been 
discussing in this paper, the transcriptomics), as well as the protein profiles provided by proteomics. 
Central here is the large-scale, parallel interrogation of cell states under different stages of development 
and defined environmental conditions. It is interesting to note that typically, there are fewer metabolic 
types than genes or proteins: in the order of 1000 per organism (as compared to several thousand genes 
for the smallest bacterial genomes and 10�s of thousands of genes for complex multicellular 
organisms).  Technology that will be used here includes Gas Chromatography Mass Spectroscopy 
Machines (see e.g.  [Phelps, 2002] for an example).  
 
It goes without saying that the required information technology and the amount of computing required 
to analyse the generated data will blow up exponentially. Much of the progress in the post-human-
genome-project era will be determined by the efficiency of data processing, progress in algorithms and 
interpretation.  
 
 
 
 
 
 
 
 

                                                 
16 One of IBM�s new supercomputers, called Blue Gene, will specifically be devoted to the protein structural form  
problem. It will cost more than 100 million USD and will have  a performance of about 200 teraflops (with a 
possible extension later towards 1 petaflop).  
17 A glossary of �omics� and �-omes� can be found at www.genomicglossaries.com/content/omes.asp.  
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6.2. Algorithms and software  
 
Currently, there are many exciting developments underway for bioinformatics algorithms. In this 
Subsection, we present a (not complete nor exhaustive) survey of interesting ideas to be developed in 
the near future.  

  
6.2.1. Advanced tools from linear algebra, statistics and information theory  
 
There is quite some active research to find novel and fast clustering methods. One particular interesting 
research topic here is to determine a distance measure that would have some biological relevance, 
contrary to the cosine between two gene expression profile vectors that have been normalized to have 
norm 1, which is now often used (as e.g. in our AQB-clustering method of Subsection 4.2.2). A 
possibility here is to use information theoretic criteria, such as the notion of mutual information (see 
e.g. [Gokcay, 2002] [Kasturi,2003]). But  another approach proceeds in two steps: First, the data set is 
�model reduced�, and then clustering is performed in the reduced (model parameter) space.  �Static� 
model reduction typically first performs an SVD (or PCA) and then represents the profiles by their 
coordinates with respect to the �dominant� left or right singular vectors.  Next, clustering is done on the 
�reduced� coordinate vectors, as we have done to derive the results presented in Figure 13.  Another 
idea is to do �dynamical� modeling: Aprroximately model each individual gene expression profile as a 
signal being generated by a dynamical system (this is especially relevant when there are several time 
points in the gene expression profile as one then considers the gene expression explicitly as the 
response of some dynamical system).  One could then define a distance measure between dynamical 
systems, e.g. the cepstrum-based mutual information measure between ARMA systems as explored in 
[De Cock, 2002a] [De Cock, 2002b] [Veldhuis, 2003].  In order to give an extreme but illustrative 
example of what could go wrong when the distance meaure used is not appropriate, consider two 
hypothetical gene profiles, one of which is a pure sine and the other a cosine with the same frequency. 
When considered as vectors over a sufficiently large amount of time (and with enough sampling 
points), these vectors will be (almost) orthogonal. When first modeled as the output of a linear 
autonomous system, it turns out to be the same dynamical behavior, the only difference being an initial 

                                  
 
Figure 23.  An atlas of functional maps. Each �ome� can be conceived conceptually as a matrix. The x-axis 
represents the genome, the complete set of ORFs, or the proteome. The y-axis represents a set of conditions, 
genetic backgrounds, patients or phenotypes. Overlapping maps in the z-axis constitute the biological atlas of 
an organism. Interactome data (protein-protein interaction networks and clusters) can be combined with data 
from large scale phenotypic analysis (phenome mapping, clusters of similar phenotypes) and transcriptome
profiling (expression clusters of coregulated genes). In the layer of the localizome, one looks for information 
on where various proteins of interest can be found (cells, cellular compartments, localization clusters) and
when. It is conceivable that a complete set of proteome�s proteins could be tested for the ability to modify
posttranslationally the same set of proteins with the goal of defining a complete ensymome. Also, projects will 
be launched to determine the 3D structure of most protein folds or the foldome of several proteomes.  
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state (a pi/2 difference in phase). Hence, the distance between the two �generating� dynamical systems 
would be 0 !  
Finally, we are also convinced of the fact that some new statistical techniques, like Independent 
Component Analysis (see e.g. [Hyvarinnen, 2001] or Higher-Order Tensor Decompositions (e.g. SVD 
for 3D-matrices, see [De Lathauwer, 2000] [De Lathauwer, 2001] ) might be very useful in the near 
future for analyzing bioinformatics data, besides the generalizations of the SVD for multiple matrices 
[De Moor 1992] [De Moor, 1994], which may become important for analyzing several microarray gene 
profile matrices simultaneously: One of these generalized SVDs, called the quotient SVD, was 
proposed in [Alter, 2003] to describe a comparative mathematical framework for different genome-
scale expression data sets where expression is formulated as a superposition of the effects of biological 
processes common to the different data sets. 
 
6.2.2. Support vector machines and kernel methods 
 
Support vector machines have been around for a while now (see [Vapnik, 1995] with first roots dating 
back to 1963). Originally, these algorithms were developed to calculate a separating hyperplane in a 
multi-dimensional data set, a problem that can be solved with a quadratic programming approach. 
However, due to the introduction of so-called data kernels, SVMs have been generalized towards 
nonlinear classification problems (exploiting the so-called Mercer condition, also nick-named �the 
kernel trick�), based on a quite intuitive idea: If one wants to solve a nonlinear classification or 
regression problem in a low-dimensional space, the data are first projected into a high-dimensional data 
space (possibly infinite-dimensional), in which the classification or regression problem becomes linear. 
This is ultimately achieved by introducing Lagrange multipliers, so that in the dual space the problem 
becomes an �easy� one.  In our recent book [Suykens, 2002], we have described a new approach, that 
allows to obtain nonlinear nonparametric but data-driven regressions and classifiers, just by solving a 
(large) set of linear equations in a least squares sense or a large (symmetric) eigenvalue problem.  The 
resulting algorithms are called least-squares Support Vector Machines (LS-SVMs).  We refer to the 
references in this book (and the book chapters itself) for more details.  
Least-squares support vector machines are very promising towards the analysis of microarray data (and 
later on to data generated from proteomics, metabolomics, etc�), because of some interesting built-in 
features: 

- LS-SVM are non-parametric, data-driven, kernel-based methods, that can be used both in 
regression problems as well as classification problems;  The only algorithmic complication 
that arises is in the solution of a large set of linear equations or a large scale eigenvalue 
problem, for which nowadays quite some algorithms are publicly available (and which in 
itself is still a very active area of research); As a matter of fact, this reduction to solving a set 
of linear equations, has allowed us to start exploiting the full machinery that is available for 
analysis of data using linear techniques.  So we have been developing the kernel versions of 
least squares regression, linear classification and linear Principal Component Analysis and 
Canonical Correlation Analysis (e.g. for the LS-SVM version of PCA, see [Suykens, 2003] 
and Fisher Discriminant Analysis, see [Van Gestel, 2002b]).  This is a whole research 
program in its own, a first outline of which can be found in [Van Gestel, 2002a].  

- Moreover, in the near future, exploiting this �analogy� between linear and kernel-based 
techniques, we will also robustify  our algorithms, in much the same way as �linear� 
algorithms can be made statistically robust with respect to outliers, deviating data and model 
assumptions etc�  

- LS-SVMS have an inherent data reduction capability, which is very convenient to deal with 
one of the typical data features of microarrays, namely that the data matrix consists of gene 
expression levels for many genes (say 5000 to 10000 with current day chips), which 
correspond to the rows,  but only a relatively small amount of columns (which corresponds to 
the number of patients or the different conditions).  

In the near future, we will be applying our expertise in LS-SVM algorithms (see 
http://www.esat.kuleuven.ac.be/sista/lssvmlab, which is a publicly accessible website where one can 
download LS-SVM software) to microarray datasets and data coming from other �omics applications 
as mentioned in Figure 23.  Some early references where SVMs have been used for analysing 
microarray data include [Mukherjee, 1998] [Brown, 2000] [Furey, 2000] [Guyon, 2002].   
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6.2.3. Bayesian networks � Graphical models  
 
Bayesian reasoning and graphical probablilistic models � familiar AI tools for reasoning under 
uncertainty � can be used to unravel the mysteries of biological systems, genetic networks and genetic 
regulation and control. In bioinformatics, probabilistic graphical models have emerged as a dominant 
approach for data analysis ([see e.g. [Moreau, 2003]). By probabilistic models, we mean here models 
that express the probability of some observations given a set of model parameters (i.e., the likelihood). 
Such models are graphical when this probability can be broken down into the combination of several 
elementary contributions and the probability can then be represented as a graph. Examples of 
probabilistic graphical models (or graphical models for short) are Hidden Markov Models (HMMs) (for 
example, for the modeling of protein families) and belief networks (for the reconstruction of gene 
networks from expression data). An example on one of our ovarian cancer projects is shown in Figure 
24. Once the probabilistic model has been set up, the goal is to find good sets of model parameters 
matching the observed data. This goal can be achieved by maximum likelihood or maximum a 
posteriori estimation or by Bayesian inference. In Bayesian inference, we use the data to update a prior 
probability distribution over the parameters into a posterior probability distribution over the parameters 
given the data. While this approach is computationally intensive and has only recently become really 
practical, it has been convincingly argued [Baldi, 1998] that this Bayesian framework offers distinctive 
advantages, such as a systematic way of �incorporating prior knowledge and constraints into the 
modeling process� and such as the fact that probability distributions over parameters or observations 
are more informative than optimal point estimates. After the modeling criterion has been chosen, a 
variety of algorithms are available for estimating the model, such as gradient descent, Expectation-
Maximization (EM), or Markov Chain Monte Carlo (MCMC) methods (Gibbs sampling, the 
Metropolis-Hastings algorithm, or simulated annealing). The application of graphical models in 
bioinformatics is extremely broad. For example, DNA, RNA, and protein sequences lend themselves to 
simple probabilistic modeling thanks to their sequential structure and their discrete alphabet. In fact, 
and this is essential to our argument, probabilistic graphical models are not limited to sequence 
analysis. In medical informatics, belief networks provide a powerful tool for decision support in 
diagnosis. Another domain where probabilistic graphical models play an important role is statistical 
genomics. The goal here is to use patterns of genetic inheritance to determine relationships between 
genes or genetic loci, or relationships between genes and traits or diseases. One important application is 
the identification of disease-causing genes (which means genes for which some variants contribute to a 
disease) from affected families (linkage analysis) or populations (association studies). Similarly, 
graphical models are powerful tools for phylogeny (which is the reconstruction of the tree of evolution 
based on genomic sequences) thanks to the graphical description of evolutionary trees and of DNA and 
protein sequences. Furthermore, the patterns of expression of genes and proteins can be efficiently 
analyzed with graphical models for clustering and with belief networks. 
 
6.2.4. Open source software and ontologies  
 
There is a growing concern that software and algorithms for bioinformatics, published in journals, 
should also be publicly available on the Web. The largest repository of Open Source software is the 
SourceForge (http://sourceforge.net), which hosts nearly 200 bioinformatics software development 
projects (including GeneX (http://genex.sourceforge.net), the Gene Ontology Consortium 
(http://www.geneontology.org) etc... Other examples are Bioperl (http://bioperl.org), www.open-
bio.org, www.openinformatics.org,  and a search on the web reveals many other packages available 
(see the commentary [Stein, 2002] and the recent Editorial in the journal Bioinformatics [Jamison, 
2003]). The algorithms we have been discussing in this paper, can also be downloaded from our 
website (see URL in the heading of this paper).  
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Figure 24. This Bayesian network represents the joint probability distribution of the measurements in the record 
of a patient with an ovarian tumor. Nodes represent the variables, such as age, pathology (benign vs. malignant), 
and CA125 serum level. Edges represent the probabilistic conditional dependency between variables. For 
example, the probability of the CA125 level being low, medium, or high given the menopausal status and 
pathology is independent of all other variables. Edges are quantified by a probabilistic model, such as a 
probability table. For example, the presence or absence of a genetic defect (GeneticD = 0 or 1) is a probability 
value for each of the configurations of the family history of ovarian cancer (FH-OC = 0 or 1) and family history 
of breast cancer (FH-BC = 0 or 1).  How to use Bayesian models, using statistical and machine learning 
methods, for medical decision support, specifically for tumor diagnosis in oncology, is explained [Antal, 2001] 
[Moreau, 2002a]. There we summarize the algorithms that are used within the International Ovarian Tumor 
Analysis (IOTA) consortium (see e.g. http://www.iota-group.org), in which 15 centers from Europe collaborate 
to set up a diagnosis system for the preoperative discrimination between malignant and benign tumours. One of 
the extensions we are currently working on, is to include microarray data (obtained from samples of a tumour 
base) into this diagnosis system.   

 
 
 
As the number and the size of sequence and structure databases on the web keeps increasing 
exponentially, so-called ontologies will help to improve the sharing of semantics across the web. The 
creation of methods for defining and maintaining shared domain models within biology will become � 
or rather already is - critical. Most biological knowledge nowadays is stored in natural language text, 
hence impeding �access� for computational approaches that require more structured (e.g. numerical) 
input.  One possibility to cope with this, is to integrate information retrieval and text mining tools into 
bioinformatics environments and biological knowledge management systems. Such tools can mine 
extensive publications databases, such as e.g. Medline (see e.g. [Berry, 2001] [Glenisson, 2003]). 
Another approach is to structure  this input in a conceptual space and set of shared vocabularies that 
allow at least a subset of biological discourse to be written down formally. This is exactly the purpose 
of Gene Ontology [Ashburner, 2000], in which hierarchical data models are created and description 
logics are defined. Knowledge models in systems biology (see below) will be based on ontologies in 
order to offer a uniform access to the knowledge implied in the system. An ontology is an abstract 
model of concepts and relations between concepts from a given (research) domain. Ontology in the 
molecular-biology field will contain concepts such as �gene�, �gene name�, �protein�, �molecular 
function�, �biological process�� Relations between these concepts can be defined. For instance, the 
concept �protein� �participates in� (relation) a certain �biological process� (related concept) and �has� a 
given �molecular function�. Already nowadays, biologists have access to multiple information 
resources such as public databases, sequence data, scientific literature, and public microarray datasets. 
A multitude of algorithms have been developed to analyze these data. Since almost every data source 
and algorithm uses its own data model, combining several algorithms or data sources for data analysis 
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can be a very complex and time-consuming task. Therefore the knowledge models of different data 
sources need to be integrated. A classic example in the molecular biology field is the problem of genes 
being stored under different names in different public databases. By defining a �is a synonym of� 
relation for the concept �gene name�, information retrieval from multiple data sources can be improved 
and simplified.  
 
Thus, the use of ontologies for the creation of a knowledge system and for the integration of different 
components (databases and tools) has many advantages. Because the knowledge in the system is made 
available in a uniform model, the ontology improves the controlled exchange of biological information 
among the integrated tools. A uniform representation of prior knowledge and results is also required to 
compare the results of algorithms with similar functionality, possibly based on different input data 
(e.g., clustering of text profiles vs. clustering of expression profiles) in a meaningful manner (see 
[Glenisson, 2003]).  
 

6.3.  Systems biology � dynamical systems � Computational 
cell biology  
 
Interesting challenges lie ahead for researchers active in dynamical systems and control ! Indeed,  
many computer scientists experience the fact that the DNA sequence is digital, as misleading once   
they find out how �fuzzy� the rest of biology is. It should however come as no surpise that increasingly, 
there are strong indications that dynamical systems modeled by ordinary or partial differential 
equations, and even hybrid systems, could be the next step in the mathematical characterization of 
biological phenomena. It should come as no surprise that molecular biology gives raise to many 
problems that can be studied within the framework of dynamical systems and control theory and 
feedback. Up to know, only a limited amount of attempts has been made to unravel the dynamics of 
transcription, gene regulation and gene expression, etc� not in the least because of the unavailability 
of the appropriate technology to measure things. However, this situation is changing rapidly nowadays 
as more and more technology is being developed to obtain in vivo observations (e.g. as a function of 
time). Obviously, when for instance looking at the gene expression profiles over a time axis, it is 
obvious that these are responses (outputs) of a dynamical system and therefore should be modeled as 
such. On a �macroscopic� level (which in biology is represented by the cells), also quite some efforts 
are underway to understand the cell�s dynamical behavior (see e.g. [Fall, 2002] for a nice and very 
interesting survey of what is called Computational Cell Biology, including dynamic phenomena in 
cells, fast and slow time scales, whole-cell models (i.e. in silico cell models), intercellular 
communication (synchronization of oscillators !), spatial modeling (diffusion), biochemical 
oscillations, cell cycle controls, molecular motors, etc �.)   
The concept of a �system� has pervaded all fields of science, and a new way of thinking about 
biological systems nowadays is called Systems Biology.  An interesting survey of this new field can be 
found in the March 1 2002 issue of Science [Kitano, 2002], where it is stated that a system-level 
understanding of a biological system can be derived from insight into 4 key properties: 

- System structures: Networks of gene interactions, biochemical pathways as well as the 
mechanisms by which such interactions modulate the physical properties of intracellular and 
multicellular structures; 

- System dynamics: How a system behaves over time under various conditions, to be 
understood through �dynamic� metabolic analysis, in which also all kinds of �causality� 
problems will be prominently present (see e.g. [Wolkenhauer, 2001] [Wolkenhauer, 2002]);  

- Control method: Analyse how mechanisms systematically control the state of a cell, which 
can lead to potential therapeutic targets for disease treatment;  

- Design method: Strategies to modify and construct biological systems (e.g. genetic 
modifications [Primrose, 2001]), having a priori defined properties.  

For the dynamic analysis of networks, mathematical models will have to be created, for which first the 
scope and abstraction level will have to be defined. Robustness is an inherent and essential property of 
biological systems, which is revealed in three basis mechanisms: 

- Adaptation, the ability to cope with environmental changes; 
- (Relative) parameter insensitivity; 
- Graceful degradation after damage (rather than catastrophic failure).  
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As we know from engineering systems, these three features are realized  by control (negative feedback 
and feedforward), redundancy, structural stability and modularity. Not surprisingly, these features are 
also present in biological systems and therefore define a new and challenging road ahead for systems 
and control researchers. We also refer to the article of John Doyle in the same issue of Science [Csete, 
2002] about reverse engineering of biological complexity.  
In all of this, the unraveling of gene regulatory networks is of major importance. The clustering 
analysis we have been describing in this paper, reveals correlation among genes, but it doesn�t say 
anything about �causality�. Regulatory networks are structured sets of genes and proteins that influence 
each other's activity. Unraveling regulatory networks helps biologists to understand the regulatory 
mechanisms that govern protein and gene activity. Gaining such global insight into the cellular 
behavior has a major impact on applied and fundamental molecular biological research. As mentioned 
previously, high throughput molecular biological techniques (microarray, proteomics, 
metabolomics,�) allow making a snapshot of the global cellular behavior and will open the door to 
holistic approaches. In a regulatory network, the connectivity between genes is hierarchically 
structured. In this respect genetic circuits are comparable to electronic circuits. When a gene, located 
on top of a regulation cascade, is activated, the corresponding protein will in turn be responsible for the 
activation of a next set of genes (Figure 25). In many cases it is not known how the regulatory network 
acts, i.e., the causal cascaded relationships between the genes are unknown. Regulatory network 
inference is a methodology to reconstruct from experimental data the underlying cellular regulatory 
network responsible for the observed behavior.   
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Figure 25. Example of a regulatory network. A key regulator (protein sensor A) is triggered by internal or 
external factors (inducer). By a posttranslational modification (often a phosphorylation) the key regulator is
transformed into its active state and starts inducing a cascade of downstream reactions. Once activated, the key 
regulator on its turn regulates (activates or represses) the downstream regulators B and C. The reaction proceeds
until, in a final step, DNA binding transcriptional regulator proteins (such as B) are activated. Activated or
repressed transcriptional regulators influence mRNA transcription. Genes induced by the transcriptional
activators are transformed into the corresponding proteins (transcription and translation process). If one of the
induced genes encodes a regulator (D) the cascade continues proliferating. Bold arrows indicate Genes. Circles 
represent inactive proteins. Activated proteins are highlighted. P: indicates a phosphorylation. (+): activation, (-): 
repression. Dashed arrows represent transcription and translation processes. Other arrows represent the 
connectivity in the network. 
egulatory network inference implies the reconstruction of the interactions between a large number of 
ariables (theoretically, all genes or gene products whose expression level was measured). Financial, 
iological and experimental restrictions, however, put a limit on the number of available 
easurements, which results in a seriously under-determined problem. Typically the interactions 

etween thousands of genes needs to be derived from a few hundred of experiments only. Fortunately, 
iology puts a number of restrictions on the number of candidate solutions. To begin with, it is known 
hat regulatory networks are sparse. Moreover, a global network is known to consist of small modules 
f which only a few will be triggered by the experimental conditions tested. Based on scientific a priori 
nowledge (literature, information retrieval, text mining) or on an integrated bioinformatics analysis of 
he experimental data (feature extraction methods, clustering, PCA, motif finding, phylogenetic 
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footprinting, and so on), the important units of a functional subnetwork can be identified and formally 
incorporated during the inference process to reduce the search space of candidate networks. Adding to 
the complexity of the problem is that high-throughput measurements are inherently noisy, which may 
lead to inconsistent observations. Moreover, the measurements are typically incomplete in the sense 
that data may be missing and many variables cannot be observed (e.g., when using microarray data 
measurements protein-protein interactions are unobserved). These characteristics of the inference 
procedure and the data imply the need  

• For a robust inference algorithm, able to cope with the noise in the data, with unobserved 
variables and creating a formal framework to incorporate prior knowledge. 

• For a knowledge system that retrieves information from different sources and presents it as 
prior information to the genetic network inference algorithm. 

Currently, we are working on Bayesian networks to cope with these challenges. A Bayesian network 
allows both a compact representation of the joint probability distribution over a large number of 
variables, and provides an efficient way to use  this representation for statistical inference. It consists of 
a directed acyclic graph that models the interdependencies between the variables, and a conditional 
probability distribution for each node with incoming edges. In the context of genetic network inference 
the nodes in the network represent the genes (variables). The edges correspond to the interactions. 
Bayesian networks are an almost natural choice to model regulatory pathways: As already pointed out, 
biological networks are structured hierarchically and therefore connections between genes are sparse.  
In a Bayesian network such sparse connections can easily be represented by conditional 
independencies. Since Bayesian networks are probabilistic in nature they can capture the stochasticity 
(either biological or experimental) of the system. Moreover, Bayesian networks can cope with the 
presence of unobserved values (hidden variables; for example, unmeasured protein-protein 
interactions). The graphical representation reflects the real biological structure and this structure can be 
inferred independently from the parameter estimation (maximum a posteriori, Monte-Carlo sampling).  
Most important is probably the natural way by which prior information can be introduced into the 
model. The most important aspect of network inference is to learn as many dependencies between 
genes and gene products as possible from the raw expression levels of an expression profiling 
experiment. Given a graph it is possible to learn the probability distributions from the available data 
and Bayesian priors. One then searches in the space of candidate graphs for a graph that models the 
dependencies in the data best. The final step from a Bayesian network to a regulatory network is then a 
minor one. 
  

6.4. Computational biomedicine  
 
In the near future, gene-detecting microarrays could be used to identify an individual�s genetic 
propensity to a host of disorders. Most genetic differences in people probably take the form of single 
nucleotide polymorphisms (SNPs, pronounce as �snips�), in which a single DNA letter substitutes for 
another.  There is an ongoing quest to characterize the major sources of variation, in which those of 
functional importance might have significant implications for finding drug targets, predicting disease 
risk or providing other prognostic information.  A chip bearing illness-linked gene variants could be 
constructed to reveal an individual�s SNPs and thus predict the person�s likelihood of acquiring 
Alzheimer�s, diabetes, specific cancers, etc�  The gene variants we possess influence how our bodies 
process the medicines we take, which in turn influences the effectiveness of the drugs and the intensity 
of their side effects. Therefore, microarrays would help physicians to choose those drugs and the 
corresponding doses that work best for each individual (�customized medicine�). As the operations of 
cells become better understood, physicians will be able to make more precise diagnoses, offer more 
sophisticated therapies (maybe even including gene therapy18) and tailor these interventions to an 
individual�s genetic background and current state of physiological functioning. Many physicians are 
hoping also that microarrays will evolve into rapid diagnostic tools that would divide patients with 
similar symptoms into separate groups that would benefit from different treatment plans. 
Following the landmark of the Human Genome Project, genomics and bioinformatics are 
revolutionizing the industry, promising fast and cost-effective development of new drugs. The fight 
against the impending menace will take place on many fronts: genomics, chemo- and bioinformatics, 
virtual testing, pharmacogenomics, and a tighter integration of the discovery, development, and trial 

                                                 
18 Alhtough at the time of writing of this article, there is a (temporary ?) moratorium on gene-therapy trials, as 
some of the treated patients develop cancers as a side effect (see Nature, vol.421, p.305, 2003).  
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phases. The completion of the human genome and the advent of the post-genomic era promise a flood 
of new drug targets to the pharmaceutical industry and a bonanza of biomarkers to the diagnostics 
industry. Current drugs use only about 500 different molecular targets while it is estimated that 
genomics and proteomics could eventually provide between 5.000 and 10.000 targets. The question is 
then moving from discovering targets to predicting which targets have the best potential. As mentioned 
before, the amount of data produced by new techniques from molecular biology and chemistry is 
exploding. Chemoinformatics and bioinformatics will be essential to mining these mountains of data. 
Data handling and analysis will cover the whole drug development processes, tackling questions such 
as which genes are involved in a pathology, which compounds are likely to show toxic effects, or 
which patients could present rare side effects. An especially exciting trend is the emerging combination 
of genomics and bioinformatics for the development of in silico models of cells, organs, or even 
patients. By building extensive mathematical models of biological processes on the basis of genomics 
measurements, it will become possible to prescreen targets and compounds in silico. This improves the 
quality of the candidates that enter the development phase, thereby significantly reducing development 
costs. Another trend is that of pharmacogenomics, which links drug response to the specific genetic 
profile of an individual (see e.g [Kalow, 2001]). By identifying those individuals who present rare side 
effects as having specific genetic variations, it will be possible to rescue some drugs that fail late in the 
development process (and for which the investment has been maximal) by linking their use to a genetic 
screening of the patient. Similarly, drugs that fail because they are not active on a sufficiently large 
portion of the patients could be rescued in some cases (e.g., anti-cancer drugs). Finally, a tighter 
integration of the whole process (for example, by feeding back genomic patient information into the 
discovery process) will also increase the efficiency of the development process.   
Clearly, for both the healthcare and the pharmaceutical industry, the only way out is the way forward, 
which means delivering better medical procedures and better drugs more efficiently and more safely, 
together with targeting problems for which there is a high social demand (chronic and degenerative 
diseases (such as AIDS, Alzheimer�s disease, or arthritis), cardiovascular and metabolic diseases, or 
cancer). This goal implies an integrated view of the patient in the healthcare process and an intimate 
understanding of pathologies from the socioeconomic and psychological levels to the genetic and 
molecular levels. Our work contributes humbly to the technical side of this social endeavor. It 
addresses questions in oncology stretching from the clinic to the wet lab, such as collecting data from 
patients for clinical studies, predicting diagnosis from clinical variables, moving new methods from 
molecular biology towards clinical practice, and studying basic processes in biology as a foundation to 
medical research. Recurring themes in our work are the focus on a more personalized medicine and the 
development of computational models that achieve a better understanding of the biological processes at 
hand, in particular pathologies.  
 
Finally, let us not forget that medicine is for people. To reach its full effect, technical work, like ours, 
must be embedded in the social, economic, legal, and psychological dimensions of our society. We 
must make better medicine available to the largest number. Finally, we must insist that medical care is 
much more than a technical act � empathy and communication are just as essential. 
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