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Abstract

Background: Microarray compendia profile the expression of genes in a number of experimental
conditions. Such data compendia are useful not only to group genes and conditions based on their
similarity in overall expression over profiles but also to gain information on more subtle relations
between genes and conditions. Getting a clear visual overview of all these patterns in a single easy-
to-grasp representation is a useful preliminary analysis step: We propose to use for this purpose
an advanced exploratory method, called multidimensional unfolding.

Results: We present a novel algorithm for multidimensional unfolding that overcomes both
general problems and problems that are specific for the analysis of gene expression data sets.
Applying the algorithm to two publicly available microarray compendia illustrates its power as a
tool for exploratory data analysis: The unfolding analysis of a first data set resulted in a two-
dimensional representation which clearly reveals temporal regulation patterns for the genes and a
meaningful structure for the time points, while the analysis of a second data set showed the
algorithm's ability to go beyond a mere identification of those genes that discriminate between
different patient or tissue types.

Conclusion: Multidimensional unfolding offers a useful tool for preliminary explorations of
microarray data: By relying on an easy-to-grasp low-dimensional geometric framework, relations
among genes, among conditions and between genes and conditions are simultaneously represented
in an accessible way which may reveal interesting patterns in the data. An additional advantage of
the method is that it can be applied to the raw data without necessitating the choice of suitable
genewise transformations of the data.

Background and/or over time. Depending on the biological question
Complex microarray experiments profile the expression of ~ at hand, one may be interested in finding subsets of genes
a large number of genes under different conditions (envi-  that can be clustered together based on similarities in their
ronmental conditions, knockout experiments, patients),  overall expression profile, or in finding subsets of condi-
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tions (tissues, patients) that can be grouped together
based on similarities in their overall gene profile. Also
more subtle relations between genes and conditions can
be envisaged, such as biclusters of genes being co-
expressed over a subset of conditions only (modules) or
groups of genes being discriminative for subsets of condi-
tions. However, the massive amount of information and
relations present in the data, pose a challenge for the data
analyst: It is not trivial to know where to start looking for
structure and a priori choices can have the consequence
that something is missed. For instance, many cluster algo-
rithms require defining in advance the number of clusters
to be searched for, a parameter which is difficult to guess
in advance. Therefore, having a rough idea on the most
prominent patterns present in the data and the (unex-
pected) particularities, prior to performing a more pro-
found analysis may be most useful. Exploratory methods
offer the possibility to reduce the data to a manageable
amount of information, for example by means of a clus-
tering of the individual elements to a small number of
groups or by means of reducing them to a small number
of dimensions (e.g., PCA/SVD). Often, such methods
yield insightful graphical representations. Ideally, such
representations should display genes and conditions
jointly in a way that associations amongst genes, amongst
conditions and between genes and conditions are all three
easy to grasp.

From this perspective, multidimensional unfolding
(MDU) seems a promising data exploration technique
(for an introduction to MDU see [1] and [2]): This
method maps both genes and conditions into the same
low-dimensional space such that, 1) genes are located
closest to the conditions for which they exhibit the highest
expression levels, 2) genes (respectively conditions) with
a more similar expression profile are located closer to each
other in the space. The resulting MDU configurations are
very easy to interpret and give a quick first insight into the
overall structure of the data and its particularities. An
additional asset of the method, is that it can be applied to
raw gene expression data: In contrast to results obtained
from other exploratory methods, results of MDU are inde-
pendent of gene-specific transformations applied to the
input data.

Although theoretically suitable as a data exploration tech-
nique, current MDU algorithms cannot readily be applied
due to problems of a general kind and of problems that
are specific for the case of microarray gene expression
data. As regards problems of a general kind: first, some
algorithms do not converge to a local minimum and yield
unstable results; second, in many cases MDU representa-
tions are not well interpretable due to a sticking together
of a majority of gene and condition points implying that
they cannot be discriminated from one another. As

http://www.biomedcentral.com/1471-2105/8/181

regards problems that are specific for the case of gene
expression data, first, existing MDU algorithms have not
been designed for the analysis of data sets of the typical
sizes of microarray data as they require a large amount of
memory; second, existing MDU algorithms also are com-
putationally very intensive (e.g., because they rely on
matrix inversions). To deal with these problems, in the
present paper we propose a novel MDU algorithm. A sub-
sequent application of it to two publicly available micro-
array datasets, each of which serving a different biological
purpose, will demonstrate its exploratory power.

Results

Method

The purpose of a multidimensional unfolding of gene
expression data is to find coordinates in a low-dimen-
sional space, both for the genes and the conditions, in a
way that the (Euclidean) distance of a gene point to a con-
dition point is shorter the higher the gene is expressed in
that condition. Note that MDU can be considered as an
extension of multidimensional scaling (MDS) to the rec-
tangular case (see chapter 14 of [1]). To formalize MDU
we will use the following notation: Genes are indexed by
i=1..n, the conditions byj =1 ... m, and the dimensions
of the low-dimensional space by r = 1 ... p. Also, let E be
the n x m expression matrix for the n genes measured in m
conditions with e; representing the expression of gene i in
condition j and e; the m-sized vector representing the
expression profile of gene i.

To map E to a p-dimensional space, a n x p matrix of gene
coordinates X and a m x p matrix of condition coordinates
Y are sought such that the Euclidean distances for gene i,
contained in the m-sized vector d; and with

dij = [2 f 1 (xir —y i )2 ]0'5 , reflect the expression profile e;

of gene i.

To find X and Y such that n vectors of distances d; reflect
the expression profiles e, we will maximize

n

2y Plends)
noi=,
r(e;,d;)<0

the average squared correlation between the expression
profiles and the distances in the low-dimensional repre-
sentation. Because higher expression levels are to corre-
spond to shorter distances, the summation runs only over
those genes for which there is a negative correlation
between the expression levels and the Euclidean distances
(denoted by r(e; d;) < 0). In order to maximize (1), the
coordinate matrices X and Y have to be such that the dis-
tance vectors correlate as negatively as possible with the
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profiles while positive correlations are to be avoided. An
important aspect of the optimization criterion, is that any
set of positive genewise linear transformations of the raw
expression data E, will yield the same optimal X, Y,
because the correlation is insensitive to linear transforma-
tions; as such, tough questions about preprocessing, inso-
far they pertain to gene-specific linear transformations are
bypassed.

Algorithm

To find X and Y that maximize (1), we reformulate this
optimization problem to an equivalent one, namely min-
imizing

n .
1 Y var e H— a;d;
n std(e;)

i=1
(with var and std denoting variance and standard devia-
tion respectively) with respect to a;, X, and Y under the
constraint that a;> 0 for all i; see the appendix for a proof
of the equivalence. For reasons given below, two more
constraints are added to the optimization problem: First,
the a; weights are bounded by an upper bound u (such
that 0 <g;<u); and second, ||x;|| <1 forall i in a space cen-
tered at the point of gravity for the condition coordinates
y;- Note that centering can be done without loss of gener-

ality.

For the minimization of (2) with respect to the g;'s, X, and
Y under the constraints 0 <g;<u and ||x;|| < 1, we propose
the algorithm GENEFOLD (which may be considered a
major upgrade of the algorithm proposed in [3]). A
detailed description of it along with a MATLAB imple-
mentation can be found at [4]. GENEFOLD is of an alter-
nating least squares type. In each iteration the g;'s, X, and
Y are updated each in turn while the remaining parame-
ters are kept fixed. The (constrained) update of the g;
weights can be done on the basis of a closed form expres-
sion (see appendix). The update of the gene coordinates X
under the constraint | |x;|| < 1 for all i, as well as the update
of the condition coordinates Y, are based on a numerical
technique called iterative majorization (see [5-7] for the
use of iterative majorization in the context of multidimen-
sional data analysis). Briefly said, iterative majorization
relies on surrogate objective functions with the following
properties: The surrogate function is easier to minimize
than the original, it lies above the original function, and
the surrogate function touches the original function in the
so-called supporting point. By choosing the supporting
point equal to the minimum of the surrogate function in
the previous iteration, the sequence of loss-values will be
non-increasing.

GENEFOLD solves both the general MDU problems and
the problems that are specific for gene expression data.
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With respect to the general problems, first convergence is
guaranteed because the proposed algorithm yields a non-
increasing sequence of loss values for a function which is
bounded below (by zero). Second, the problem of a lack
of discrimination of the coordinates such that a majority
of points stick together (which is known as the degeneracy
problem in MDU), is solved by the constraints a; < u and
||x;]] £1.1) Due to the restriction ||x,]| <1 in a space cen-
tered at the point of gravity of the condition coordinates,
the gene points lie on the unit sphere, and 2) limiting g; to
values smaller than or equal to u with the value of u well
chosen (see the appendix), pulls the variance of the dis-
tances d, to the variance of the distances on the unit sphere
with uniformly distributed points. With regard to prob-
lems that are specific for the analysis of (large) gene
expression data sets; first, GENEFOLD works on consider-
ably smaller matrices than the (n + m) x (n + m) used in
classical procedures for MDU (in which MDU is treated as
a special case of MDS); second, GENEFOLD does not rely
on computationally intensive methods like matrix
inverses [1,8]. As an illustration of the computational
speed of GENEFOLD: with 100 iterations, the analysis of
a 517 x 12 matrix takes about a second and of a 6075 x
173 matrix about 6 minutes (on a desktop, Pentium 2.80
GHz4 CPU with 0.99 GB RAM).

Applications

We applied multidimensional unfolding to two publicly
available data sets, one situated in an experimental con-
text [9] where the study aimed at characterizing the tem-
poral program of gene expression in human fibroblasts
and one situated in a clinical setting [10] where the aim
was to classify two tissue types on the basis of the gene
expression levels.

Time-course gene expression data

The data discussed in [9] pertain to the temporal change
of genes in human fibroblasts that had been deprived
from serum for 48 hours which causes them to enter a
nondividing state. The deprivation was ended by addition
of a medium containing fetal bovine serum (FBS) and
micro-array hybridization was performed at several
moments during the 24 hours following serum stimula-
tion. We will analyze the 517 genes that were also retained
by [9] and that can be obtained at [11].

Because our unfolding algorithm relies on an iterative
procedure with a non-convex solution space and a pre-
specified dimensionality, some consideration has to be
given to the choice of a stopping rule, to the problem of
local minima, and to the dimensionality of the configura-
tion. With respect to the stopping rule, we chose to termi-
nate the iterative procedure when the difference in loss
between the current and previous solution was less than
10-5; our experience with this value is that it yields stable
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solutions (in the sense that more iterations result in
almost the same configuration and loss) in a reasonable
amount of time. The problem of local minima was
accounted for by restarting the algorithm 101 times, using
100 semi-rational starts and a rational start for the initial
coordinates, the solution with the lowest loss being
retained. The dimensionality of the configuration is deter-
mined by a comparison of loss values: For the one up to
five-dimensional solution, loss was respectively 0.55,
0.25, 0.19, 0.15, 0.11, which suggests a two-dimensional
configuration (one dimension less results in a considera-
ble increase in loss while more dimensions barely reduce
the loss). For the two-dimensional configuration, a very
good fit was obtained: The average genewise correlation
between the distances and the raw data is -0.86. A visual
representation of the solution is depicted in Figure 1
where the genes are denoted by dots and the time points
by self-explanatory labels.

A striking feature of Figure 1 is the clocklike organization
of the time points, which is characterized by the following
features: First, the points lie approximately on an elon-
gated circle; second, they are ordered according to time;
and third, the last time points fold somewhat back to the
earliest. Note that no information on the order of the time
points is included in the unfolding analysis; the ordered
outcome is therefore not a trivial finding. The unfolding
analysis also reveals that there is little differentiation
between some time points; for example, the time points O
hr and 15 min are clustered together, which means that
expression 15 minutes after stimulation is barely different
from expression during the nondividing state (0 hr); the
same holds for the time points 30 min, 1 hr, 2 hr and 16
hr, 20 hr, 24 hr, while the time points 4 hr, 6 hr, 8 hr, 12
hr are more spread out. The large gaps between 2 hr and 4
hr and between 12 hr and 16 hr suggest a biological event
occurring within these time intervals.

Taking a look at the genes, we see that these, too, are
organized in a circular way with a blank spot in the mid-
dle. Another feature to look at, is the location of the
majority of the genes: Most are located close to the earliest
and latest time points, whereas only a few genes are
located at intermediate time points. The expression of a
gene at the different time points is reflected by the dis-
tances from this gene to the time points: The closer a time
point is located to a gene, the higher the expression level
or, conversely, the more distant a time point is from a
gene, the lower the expression level. Note that for these
data, we know that the expression at 0 hr corresponds to
a neutral state, such that higher expression levels indicate
induction and lower expression levels repression. This
means that induction occurs at time points close by while
repression occurs at distant time points. For ease of inter-
pretation, we used distinctive labels for genes with an
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induction peak and with a repression peak: Genes with an
induction peak being those for which the difference in
distance between the reference time point and the time
point closest to the gene point is larger then the difference
in distance between the reference time point and the time
point furthest from the gene point (i.e., genes for which
the largest difference in expression level from the expres-
sion level at 0 hr is positive, respectively negative).
Remember further that the distances between gene and
condition points inversely reflect the expression level.
Consider, for example, the gene represented by the square
numbered one in Figure 1 (this is close to 0 hr): From the
unfolding configuration, it can be derived that this gene
will have its highest expression at 0 hr, the time point that
is closest to it; continuing in a time-wise direction, expres-
sion decreases up to 12 hr as is reflected by the increasing
distance; from that point on, the distances become pro-
gressively shorter, which suggests that the expression lev-
els steadily increase. The resulting expression profile is
plotted in the upper part of the right panel of Figure 1 (the
connected dots represent the profile as modeled by the
distances; the non-connected dots the original data pro-
file); the horizontal axis represents time, the vertical axis
the expression levels as they are modeled by the unfolding
representation. The time axis is proportional to real time
(e.g., the tick mark for 12 hr is placed 48 times further
than the tick mark for 15 min); the modeled expression
levels are obtained (per gene) by subtracting the distance
from the distance at time 0 hr and multiplying these dis-
tances by minus one. In the expression profiles in Figure
1, the neutral state is indicated by the horizontal (refer-
ence) line. Thus the configuration suggests that gene one,
and all those that are close to it, will be repressed soon
after stimulation with the highest repression occurring
from 8 to 12 hours. Therefore, for genes close to gene one,
there appears to be little or no induction. Otherwise, the
gene labeled one (gene number 21 in the original data
set), belongs to the first cluster of genes found by [9] and
is an inhibitor of the progression of the cell-cycle division
(p57 Kip2). Profiles for other genes can be derived in a
similar way: In Figure 1, four additional profiles are given
for the genes numbered two to five in the left panel. Note
that the gene numbered five, which is located in the center
of the clock, badly fits the original data: The correspond-
ing derived profile is irregular and unstable in that small
changes in the location of this gene would result in
another profile, given the fact that all time points are
almost equally distant.

Taguchi and Oono [12] analyzed the same data, leaving
out the preset expression level at time O hr. They applied
nonmetric multidimensional scaling on the matrix of dis-
similarities between genes where dissimilarities were
measured by the Pearson correlation coefficient with the
sign flipped. As a result they obtained a two-dimensional
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Unfolding configuration for time experiment data. Unfolding configuration (left panel) and derived expression profiles
(right panel) for five selected genes. Genes labeled by a dot show a repression peak, while genes labeled by a cross show an
induction peak compared to the initial time point 0 hr. Some genes are labeled by a black square and also have a numbered
label: their derived expression profile is given in the right panel (the connected black dots), together with the original profile

(the unconnected blue dots).

configuration in which the genes were arranged on the
edge of a circular structure. To detect the temporal regula-
tion, the authors subsequently drew the configuration at
each time point, plotting only those genes that exceeded a
preset expression peak: As shown in [12], the expression
peaks move gradually around the circle in a timely fash-
ion. These authors also take up the discussion on the peri-
odicity of genes in relation to the cell-cycle. They argue
that the ring-like structure is in favor of periodicity in the
data. Yet, undoubtedly, the unfolding approach is a much
better technique to tackle this substantive issue: In case of
periodicity, the time points will fall approximately on a
circle with time points that are separated k periods falling
together. As illustrated by Figure 1, the clockwise organi-
zation of the time points suggests some periodicity but the
fact that the last time points do not coincide with the ear-
liest ones, does not fit within a periodic frame. Given the
experimental difficulties encountered in studies that
involve temporal regulation of genes, we do not wish to
draw any conclusions concerning the presence or absence
of periodicity in this particular data set. It should be clear,
however, that multidimensional unfolding is a particu-
larly suitable analysis technique to deal with such an
issue.

Colon cancer data

Many applications of gene expression profiling can be
found in clinical settings where genome-wide expression
is measured for different patient or tissue groups. A chal-
lenge for the exploratory MDU tool within this setting
may be to retrieve useful information beyond a mere iden-
tification of genes that optimally discriminate between
the different groups.

We consider gene expression data for 62 colon tissues, 40
of which are tumorous (colon adenocarcinoma) and 22
normal [10] (see [13] for the data in MATLAB format). To
obtain those genes that discriminate optimally between
the groups, we selected of the 2000 available genes those
400 that have the highest correlation with the binary clas-
sifier (normal versus tumor). The 400 x 62 expression
matrix was subjected to a MDU analysis yielding the fol-
lowing loss values for the one up to five dimensional solu-
tions: 0.80, 0.38, 0.31, 0.27, and 0.24. The two-
dimensional solution offered the best trade off between fit
and sparseness with an average correlation between dis-
tances and expression profiles amounting to -0.78.
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Tissues

As to be expected, the normal and colon cancer tissues are
separated in the MDU configuration, see the left panel of
Figure 2: At the left, we find the normal tissues (labeled by
N) and at the right the tumorous ones (labeled by Tu);
two normal tissues are erroneously grouped with the
tumors and, conversely, five tumor samples are placed
with the normal samples (these results are comparable
with the results in [10]). However, the right panel of Fig-
ure 2 in which the tissues are labeled according to the
patient number (such that the same number corresponds
to the same patient) includes a clear indication that in
case of patient number 36 the tissues have been misla-
beled rather than misclassified. A further aspect of the
MDU configuration that jumps to the eye, is the separa-
tion of the cancer tissues in two groups, one located in the
upper right of Figure 2 and one in the lower right. We can-
not be certain of the cause of this separation, but based on
the available patient descriptions, it might be related to
the contamination of tumor tissue with normal tissue, the
cancer stage, or both. In Figure 3 some of the tissues are
labeled in function of the percentage of contamination
with normal tissue, and the stage of the cancer (ranging
from A, early stage, to D, metastasis). It can be seen that
the top group contains tissues of a more developed cancer
stage and are less contaminated than the bottom group
(this information was found in [14]). The fact that more
contaminated tissues do not shift towards the group of
normal tissues, might suggest that the degree of contami-
nation is not the prime cause for the observed subdivi-
sion. Related to this, all misclassifications are situated in
the region containing the more contaminated tissue sam-
ples.

Genes

Taking a look at the genes in Figure 2 (left panel), there are
two clearly separated groups, one associated to the normal
tissues and one associated to the tumor tissues. To retrieve
the functional annotation of the genes in these groups, we
used DAVID [15] on a selection of genes that are fitted
well by the MDU representation (r(e;d;) <-0.80). For the
genes closer to the normal tissues, consistent with the
results in [10], we found a cluster of genes annotated with
muscle contraction. As to the genes associated to the
tumor tissues, several functional groups were discerned
which are further labeled using different symbols and
colors in the right panel of Figure 3. These functional
groupings seem to hint at an elevated cellular metabolism
reflecting the higher metabolic activity and division rate
typical for cancer cells: a group of ribonucleoprotein genes
(red dots), a group of ribosomal protein genes (green
squares), a group of proteasome genes (blue triangles), a
group of protein folding genes (yellow stars), and a group
of kinases related to cell cycle regulation.
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Discussion

Multidimensional unfolding can be a useful tool when
dealing with the challenging task of extracting useful
information from microarray gene expression data: As
shown in this paper, MDU yields easy-to-grasp represen-
tations and appears to be a versatile tool for data explora-
tion that may reveal many kinds of interesting patterns
present in the data. For example, in the first application,
an intriguing clock-like structure for the time points was
revealed, a pattern that has not been uncovered in a direct
way up to present for these well-studied data; in the sec-
ond application, the unfolding analysis revealed an
intriguing subdivision of the cancer tissue groups, beyond
a mere discrimination of normal and tumor tissues. A pos-
sible limitation of the unfolding approach as presented
here, is that in case of a large number of heterogeneous
conditions, low-dimensional configurations can be
obtained that are mainly blurred due to the actual high-
dimensional structure of the data. Also, a huge number of
genes can result in a configuration that provides little
insight into the data. A possible way to overcome this lim-
itation could be the use of a hybrid approach that results
in low-dimensional distance-based representations of
clustered data. Such an approach, has already been pro-
posed for multidimensional scaling [16] and for the clus-
tering of row elements in metric multidimensional
unfolding [17].

Appendix

Equivalence of loss functions

We show the equivalence of minimizing loss function (2)
and maximizing (1). Consider the loss function for one
gene,

var| —a +ad; | = var(e;) 24
std(e;) std(e;)

= 1+2a;(e;,d;)std(d;) + a? var(d;).

cov(e;,d;) +a? var(d;)
var(e;)

Equation (3) is a plain quadratic form in g; which, under
the constraint a;> 0, reaches its minimum at

P CTL))
" ostd(d;)

ifr(e;, d;) <0, and at 0 if r(e; d;) > 0. Substituting the opti-
mal a;'s in loss function (2) yields

1
1—— Z r(ei,di)z.

M r(e;,d;)<0

Obviously minimizing (5) is equivalent to maximizing

(1)
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Figure 2

Unfolding configuration for colon cancer data: Normal versus tumor. Unfolding configuration for the colon cancer
data: The left and right panels only differ in the labels used for the tissues. Genes are labeled by blue dots in both panels; tissues
in the left panel are labeled with 'N' for the normal tissues and with 'Tu' for the tumor tissues while in the right panel they are
labeled in function of the patient number with positive numbers indicating a normal tissue for that patient and negative num-
bers a tumor tissue.

Figure 3

Unfolding configuration for colon cancer data: Two tumor types. Unfolding configuration for the colon cancer data: In
the left panel, tissues are labeled for the normal tissues with 'N' and for the tumor tissues either with 'Tu' or a label indicating
both the Duke stage and the percentage of contamination with normal tissue. In the right panel, a detail of the unfolding config-
uration is given that zooms in on the region containing genes that are more highly expressed in the tumor tissues. Different
colors and symbols are used to discern the different functional gene groups: Red dots for the ribonucleoprotein genes, green
squares for the ribosomal protein genes, blue triangles for the proteasome genes, orange asterisks for genes involved in pro-
tein folding, and black asterisks for protein kinase genes.
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Choice upper bound on a;'s and constrained update

From Equation (4), it can be seen that subjecting the a;s to
an upper bound u attracts the solution space to configura-
tions with a positive lower bound on std(d;), the spread of
the distances, and this will be the more so the stronger the
distances correlate with the expression profiles. A suitable
value for u depends on the range of the coordinates: We
propose to work in a reference space centered at the point
of gravity of the condition coordinates and with | |x;|| < 1
(such that the gene coordinates lie within the unit
sphere).

For this reference space, the upper bound for 4; is set equal
to u = (mv)-0-5 with v the variance of the Euclidean distance
from a point i to points sampled uniformly in the unit
sphere of dimensionality p with v calculated using Monte
Carlo simulation. Using this upper bound for a; will, for a
maximal (absolute) correlation r(e; d;) = -1, pull the var-
iance of the distances towards v or larger values. The con-
strained update for a; becomes then

_r(eidi) o

Std(di) B

_rleid;) _
std(d;)
_r(eidi) o
sd(d;) ~

0,

_1(e,d;)
std(d;)

’

’

u,
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