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Abstract

Background: Computational de novo discovery of transcription factor binding sites is still a challenging problem. The
growing number of sequenced genomes allows integrating orthology evidence with coregulation information when
searching for motifs. Moreover, the more advanced motif detection algorithms explicitly model the phylogenetic
relatedness between the orthologous input sequences and thus should be well adapted towards using orthologous
information. In this study, we evaluated the conditions under which complementing coregulation with orthologous
information improves motif detection for the class of probabilistic motif detection algorithms with an explicit evolutionary
model.

Methodology: We designed datasets (real and synthetic) covering different degrees of coregulation and orthologous
information to test how well Phylogibbs and Phylogenetic sampler, as representatives of the motif detection algorithms
with evolutionary model performed as compared to MEME, a more classical motif detection algorithm that treats orthologs
independently.

Results and Conclusions: Under certain conditions detecting motifs in the combined coregulation-orthology space is
indeed more efficient than using each space separately, but this is not always the case. Moreover, the difference in success
rate between the advanced algorithms and MEME is still marginal. The success rate of motif detection depends on the
complex interplay between the added information and the specificities of the applied algorithms. Insights in this relation
provide information useful to both developers and users. All benchmark datasets are available at http://homes.esat.
kuleuven.be/,kmarchal/Supplementary_Storms_Valerie_PlosONE.
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Introduction

The identification of transcription factor binding sites (motifs) is

crucial for the understanding of transcriptional networks. With the

growing number of sequenced genomes [1–3], detecting motifs

through ‘phylogenetic footprinting’ has become feasible. Several

motif detection algorithms have therefore integrated the use of

orthology in addition to the frequently used coregulation

information [4]. Most of the original motif detection algorithms

[5–12] could potentially incorporate orthologous sequences, but

only by treating them independently and thus ignoring the

underlying phylogeny that describes their relatedness. Because of

this simplification, each orthologous sequence would contribute

equally to the detected motif. This is counterintuitive as one would

expect that a distantly related ortholog with a particular motif site

contributes more information to the detection of that motif than a

more closely related ortholog with the same site conserved. On the

other hand, the loss of a motif site in a distantly related ortholog

should be penalized less than when this loss event occurs in a more

closely related ortholog [13]. A number of more recent

probabilistic motif detection algorithms explicitly incorporate the

relations between orthologous sequences by means of an

evolutionary model, for example EMnEM [14], OrthoMEME

[15], PhyME [16], the method by Li and Wong [17], Phylogibbs

[18], Tree Gibbs Sampler [19] and Phylogenetic sampler [20].

So far no independent study has evaluated the extent of

information contained within either the coregulation or the

orthologous space and the conditions under which complementing

both spaces improves motif detection. In this study we performed

such analysis by applying two of the more advanced motif

detection methods on both synthetic and real datasets with

different properties. We choose for ‘Phylogibbs’ (PG) [18] and

‘Phylogenetic sampler’ (PS) [20] as both algorithms are specifically

designed to integrate coregulation with orthology (therefore
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referred to as phylogenetic motif detection algorithms in this

study), neither of them is limited in the number of species that can

be included and previous studies [18] already described the

superiority of PG in detecting motifs. As a comparison we included

MEME [21] as a representative of algorithms that cannot

explicitly incorporate phylogenetic relations (therefore referred to

as a non-phylogenetic motif detection algorithm).

Materials and Methods

Motif Detection Algorithms and Parametersettings
Three motif detection algorithms were used: ‘MEME’ [21],

‘Phylogibbs’ [18], and ‘Phylogenetic sampler’ [20]. We used

MEME-4.00 with default parameters, we set the distribution of

motifs to ‘‘anr (any number of repetitions)’’ and the maximum

number of EM iterations to 500. We searched for a palindromic

motif (-pal) in case of TyrR and LexA for the real data (see Text

S3). For PG we used Phylogibbs-1.0 and for PS we used

Gibbs.x86_64. Before performing the tests on the synthetic and

real datasets, we thoroughly tested the sensitivity of both

algorithms towards parametersettings, not of primary importance

for our main discussion, but that influence the results if not

optimized. These tests and the optimized settings as applied in our

analysis are summarized in Text S3. Most settings were not varied

throughout the test runs except for the tracking threshold of PG

that was set more stringent than its default value, unless indicated

otherwise.

For PG prealignments were made with Dialign [22] (with the

parameter T = 2 to avoid long unaligned regions obtained with

higher values of T). For PS prealignments were obtained with

ClustalW (version 1.83 [23]) as suggested by the developers. For

the difficult to align datasets we also performed tests with PS on

prealignments obtained with Dialign (results in Text S2). For those

tests the results were similar or worse than those obtained with

prealignments from ClustalW, indicating that the observed

differences between PS and PG are caused by the intrinsically

different way they cope with the prealignments rather than to

small differences in the used prealignments. In general difficult to

align sequences will be left unaligned with Dialign. This improves

the alignment, but implies that those regions can no longer be used

by PS (see also below). Therefore, for PS it is often more

advantageous to use ClustalW instead of Dialign (which we

therefore did in the remainder of the analysis).

Synthetic Datasets
We created two synthetic motif weight matrices (WMs) as

described previously [18], both of width 13 bp, one with a high

information content (IC) and one with a lower IC. Motif sites

sampled from these WMs were embedded at a randomly chosen

position in a random background sequence of length 500 bp. Each

ancestral sequence (,a background sequence containing an

embedded motif site) was then evolved along a phylogenetic tree

under a defined evolutionary model to create phylogenetically

related sequences. For the background sequence we used the Jukes

and Cantor (JC) model [24], for the embedded motif sites an

adapted Felsenstein (F81) model [25]. Details on the construction

of the WMs and the evolutionary related sequences are in Text S1.

For the experimental setup we simulated datasets for the

coregulation space, the orthologous space and the combined

coregulation-orthology space. For the coregulation space, we

simulated the intergenic sequences of ten genes in a reference

species (the species exhibiting a proximity of 0.80 to the ancestral

species was considered the reference species). In each of these 10

sequences a motif site, drawn from a common motif WM was

embedded. For the combined space, we extended the coregulation

space by simulating the orthologous intergenic sequences for each

of the ten coregulated reference genes according to a phylogenetic

tree that describes the relatedness of the orthologous sequences to

the ancestral sequence. The topology of the phylogenetic tree was

varied between a star topology (equal or unequal distances) and a

tree topology with internal nodes. The orthologous space consisted

of the intergenics of a single reference gene together with its

simulated orthologs. For all trees used in our tests, the Newick

format is given in Table S4.

Real Datasets
The real datasets are derived from Gamma-proteobacterial and

Saccharomyces intergenic sequences. Also here datasets were

obtained with either a high IC or a low IC motif. For the

coregulation space we selected target genes in Escherichia coli for the

regulators LexA and TyrR and in Saccharomyces cerevisiae for the

regulators URS1H and RAP1. To extend these datasets in the

combined space, we searched for all target genes their corre-

sponding orthologs in respectively other Gamma-proteobacterial

or Saccharomyces species. The real datasets for the orthologous space

only consist each time of one single target of the regulator in the

reference species and its corresponding orthologs. In this case we

selected as reference target, a gene that contained exactly one copy

of the motif site in its upstream region in order not to confound

coregulation with orthologous information (as the presence of

multiple copies confers coregulation information). For the real

data, we defined the upstream region as the intergenic region

between the start codon of the gene and, depending on its

orientation the start or stop of the previous coding gene. Details on

the construction of the real datasets are in Text S1 and Table S2,

the phylogenetic trees that relate the intergenic sequences of

respectively the bacterial and yeast species are depicted in Figure

S1. The Newick formats of the trees are given in Table S4.

Performance and Quality Measures
Predicted motif sites. Motif sites predicted by MEME

correspond to all sites obtained from the Expectation

Maximization based solution. For PG, the ‘predicted motif sites’

are the motif sites from the tracked maximum a posteriori solution.

For PS we defined the ‘predicted motif sites’ as the sites returned

after running the ‘align-centroid’ option on the collection of

centroid motif sites. More information on the output of PG and PS

can be found in Table S1: ‘Solution/Posterior probabilities’. A

‘predicted motif model’ is the WM constructed from the predicted

motif sites for a specific transcription factor.

Number of datasets/runs with an output (D1/R1). For

the synthetic data we had 100 input datasets per test. D1 gives the

number of datasets for which the algorithm returned an output,

irrespective of whether this output is correct or not. For the real

data we only had one input dataset per test, so here we re-ran the

algorithm ten times to get ten outputs for one input dataset. R1

represents the number of runs for which the algorithm returns an

output. PG and PS internally evaluate their results and only report

for each run or dataset the solutions that exceed a certain

threshold. As a result for PG and PS, D1 and R1 sometimes are

smaller than the number of runs. In contrast, MEME by default

reports all retrieved results irrespective of their scores and

therefore the number of datasets or runs with an output by

definition equals the number of runs.

Recovery rate (RR). The RR determines the percentage of

the output (D1 for synthetic datasets) (R1 for real datasets), for

which the predicted motif model corresponds to the ‘correct’ motif

model. If a match is found between the predicted and the correct

Motif Detection in Dual Space
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motif model, the recovery is one, otherwise zero. Motif models

were compared with MotifComparison [26]. For the synthetic

data the correct motif model was based on the embedded motif

sites, for the real data on the annotated motif sites in the reference

species (E. coli or S. cerevisiae). Predicted models in the real data

contain besides contributions from sites in the reference species

also contributions from yet unannotated sites present in the

orthologs. This sometimes causes discrepancy between the

predicted and the correct motif model. For this reason predicted

motif models that did not pass the MotifComparison threshold

were retained if both the species-dependent positive predictive

value and species-dependent sensitivity (for definitions see below)

were above 50% or if one of the two measures was higher than

80%.

Positive predictive value (PPV) and sensitivity (Sens).

The PPV [PPV = TP/(TP+FP)] is a measure for the percentage of

true positive (TP) sites amongst the predicted sites (TP+FP). A TP

site corresponds in the synthetic datasets to the embedded sites and

in the real datasets to the annotated sites. The false positives (FP)

correspond to predicted sites, other than those embedded or

annotated. The Sens [Sens = TP/(TP+FN)] is a measure for the

percentage of true sites (TP+FN) that are found by the algorithm,

with FN = false negatives corresponding to embedded or annotated

sites not recovered by the algorithm. When a predicted site covers at

least half the length of the embedded or annotated site, it is

considered as a true positive site. For the less studied species other

than E. coli or S. cerevisiae no judgement can be made on whether sites

are true or false. Therefore, we defined the species-dependent PPV

(spPPV) and species-dependent sensitivity (spSens) by only taking

into account the sites predicted/annotated for the genes of the

reference species. In the output tables of the Results section the PPV,

spPPV, Sens and spSens are described per test and represent the

mean of these values over all datasets/runs with a correct output

(recovery equal to one) within a single test.

Results

Design of the Test Datasets
In this study we assessed the specific contribution of the

coregulation, the orthologous and the combined space on motif

detection (Figure 1 Panel A). Success rates observed in the

coregulation space were treated as baseline levels. In the combined

space we tested under which conditions adding orthologs

improved the baseline success rate observed in the coregulation

space. We tested the effect of changing the topology by which the

orthologs are related, the phylogenetic distances and the number

of the added orthologs (Figure 1 Panel B). Lastly, we evaluated the

success rate of the algorithms when only orthologous information

is available, also by using different conditions. In each space we

performed tests on datasets with different signal to noise ratios

(Figure 1 Panel C). We refer to ‘changing the signal to noise ratio’

as any manipulation that lowers/increases the degree to which the

motif is statistically overrepresented in the dataset compared to the

background e.g. by changing the degree of degeneracy of the

motifs or by leaving out motif sites.

Methodological Differences between the Used
Algorithms

In all tests we observed that the motif detection results depend

not only on the type of information that was added, but also on the

interplay between the added information and the specificities of

the applied algorithms. To view the results in the light of these

algorithmic characteristics, we here outline the most important

differences between the applied algorithms. A more detailed

comparison can be found in Table S1.

At first, PG and PS are both based on Markov Chain Monte

Carlo (MCMC) sampling [27] to efficiently explore the solution

space. To converge to a global solution in a single run of the

algorithm, PG relies on a specifically designed optimization

strategy, while PS estimates the global solution by combining

local solutions obtained from different runs into a final ensemble

centroid solution [28]. MEME on the other hand uses an

Expectation Maximization strategy that often leads to a local

rather than a global optimum.

In contrast to MEME, PG and PS explicitly model the

phylogenetic relatedness between the orthologous sequences. They

do so by scoring motif sites that are located in evolutionary

conserved regions with a tree-based evolutionary model. These

evolutionary conserved regions are delineated in advance by

means of a prealignment. PS only considers the regions that are

aligned (conserved) over all input sequences (,blocks). It does not

search for motifs in any of the regions that contain gaps, even if

those regions are aligned over a subset of the sequences. PG in

contrast, does consider the complete sequence alignment when

searching for motifs. It scores motif sites in the aligned subparts

(,multi-species window) phylogenetically, while treating the motif

sites in the unaligned parts (,single-species window) indepen-

dently. This different way of treating the prealignment implies the

need of different alignment strategies to delineate evolutionary

conserved regions prior to the actual motif detection. PS relies on a

global alignment as obtained by ClustalW [23] to identify the

conserved blocks, while the more refined procedure of PG requires

an alignment strategy, such as Dialign [22] that explicitly

annotates aligned and unaligned regions.

A third difference relates to the scoring of the evolutionary

conserved motif sites by the tree-based evolutionary model; here

PS handles a non star like topology directly, while PG can not.

Finally, PS accounts for the phylogenetic relatedness also during

the construction of the motif WM by means of a weighting

scheme, while PG does not. This weighting scheme assigns a

higher weight to motif sites conserved in distant orthologs in their

contribution to the motif WM than to sites conserved in close

orthologs.

Motif Detection in the Coregulation Space
Datasets consist of sets of coregulated genes from the reference

species. We tested the ability of the algorithms to recover motifs in

datasets with different signal to noise ratios. The most trivial task

consists of detecting a high IC motif in a dataset where each

sequence contains a motif instance (Figure 2(A)). We also assessed

whether the motif detection tools could recover motifs in datasets

with lower signal to noise levels e.g. by searching for a low IC motif

(Figure 2(B)) or by searching for a high IC motif in a dataset where

not all sequences contain a motif instance (Figure 2(C)). We applied

those tests on both synthetic and real datasets. Figure 2 summarizes

the results for the synthetic datasets (from Table S5 (A) and Table

S6) as these reflect the most important tendencies. Details on the

results for the real datasets can be found in Table S5 (D).

Results were evaluated by ‘performance measures’ and ‘quality

measures’. The ‘performance measures’ describe whether the

motif detection tool is able to retrieve the motif model of the

embedded motif in a particular test. They correspond to the number

of datasets with an output (D1) and the recovery rate (RR) that indicates

the percentage of outputs in which a correct motif was predicted.

The ‘quality measures’ defined as the positive predictive value (PPV)

and the sensitivity (Sens) describe whether and how many of the true

embedded motif sites contribute to the predicted motif model. In

Motif Detection in Dual Space
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the figures the number of datasets with an output (D1) is indicated

by a clear box. The number of those datasets that has a correct

outcome (D1*RR) is indicated by the black area in the clear box.

A larger fraction of the black area in the box (RR) indicates that a

larger fraction of the output is correct. The best results are thus

obtained if most of the outputs contain a true motif model (largely

filled boxes) of a high quality (the latter is indicated by the PPV

and Sens approaching 100).

Figure 1. Overview of the test setup. Panel A presents the three different information spaces in which motif detection was assessed: the
coregulation, the combined coregulation-orthology and the orthologous space. The coregulation space consists of a set of non-coding sequences
from a reference species (Spec1 = REF) that each contain at least one motif site for a common TF (indicated by Gene 1 to Gene N). For the combined
space, we extent the coregulation space with orthologous sequences selected from different species (indicated by Spec 2 to Spec M). One reference
gene together with its orthologs is referred to as an orthologous set (indicated by a blue frame). The combined space thus consists of multiple
orthologous sets while the orthologous space consists of a single orthologous set. We assessed the specific contribution of each space to the success
rate of motif detection by performing the tests summarized in panels B and C. At first we tested the effect of adding different types of orthologous
information as shown in Panel B. These tests involve changing the topology by which the orthologs are related (equal, unequal star and non star like
topology), changing the mutual distance between the orthologs (represented by elongating the branches of the tree) and using datasets with a
different number of orthologs. Secondly, the effect of altering the signal to noise ratio of the datasets on the accuracy of the results was tested 1) by
changing the degree of degeneracy of the motifs and 2) by omitting motifs sites. We differentiate between leaving out motif sites in the coregulation
direction versus their omission in the orthologous direction as is illustrated for a dataset in the combined space.
doi:10.1371/journal.pone.0008938.g001

Motif Detection in Dual Space
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In Figure 2 we see that the results were consistent for the three

tested algorithms. It shows that coregulation information is

sufficient to detect the correct motif provided that the motif has

a high IC. For a low IC motif, both the RR and the motif quality

(assessed by PPV and Sens) drop. More specifically we had to

lower the tracking threshold T of PG to 0.05 in order to still

retrieve this low IC motif. Lowering the tracking threshold results

for PG in general, in a higher number of datasets with an outcome

(D1), but at the cost of a decreased RR and PPV. Of the three

algorithms tested, PS performed best for these low IC motifs with a

RR equal to of 80.6%, compared to a RR of 34% for MEME and

5.3% for PG. As shown in Figure 2(C), all algorithms are quite

robust against the presence of sequences without motif site

provided the motif itself is sufficiently pronounced. Based on

these results, we expect that including orthologous information will

be beneficial if it increases the signal to noise ratio in the dataset

e.g. when searching for a low IC motif.

Motif Detection in the Combined Coregulation-
Orthology Space

In this section we assessed to what extent adding orthologous

information to the coregulation space improves motif detection.

For the algorithms that rely on a phylogenetic model we expect

that their results will depend on the accuracy with which the used

phylogenetic tree approximates the true phylogenetic distances

between the used intergenic sequences. For real data approximat-

ing an optimal tree is not obvious as the intergenic sequences can

not accurately be aligned. The best results were obtained with a

tree that is based on a ‘neutral’ evolution rate. Using a protein tree

seriously deteriorated the results obtained by the phylogenetic

motif detection algorithms as the true evolution rate of the

intergenic sequences is underestimated (for more details see Table

S3). In all tests, we used for the phylogenetic algorithms the tree

based on a neutral evolution rate. If the input sequences were left

unaligned, PG and PS will just like MEME treat the sequences

independently.

Effect of the phylogenetic distances between the

orthologs. Datasets consist of coregulated genes in the

reference species (coregulation space) complemented with their

respective orthologs (orthologous space). A reference gene together

with its orthologs constitutes an orthologous set. For the first set of

tests, the relatedness between the sequences in an orthologous set

was modeled by a ‘star topology with equal distances’. Each orthologous

set consists of the reference sequence (proximity of 0.80) and four

equally distant orthologs. The tests consist of changing the distance

(,‘‘proximity’’) for these four orthologs that were added to each

coregulated reference gene.

All results for a high and low IC motif resumed in Table S5 (A)

reflect the same tendency, summarized for one representative

example in Figure 3. Figure 3 shows how the detection of a low IC

motif was affected by adding to a set of coregulated reference

genes (Figure 3(A)), either closely related orthologs (proximity of

0.90, Figure 3(B)), intermediately (proximity of 0.50, Figure 3(C))

or distantly related orthologs (proximity of 0.20, Figure 3(D)).

Adding orthologous information improved the RR for all

algorithms (fraction of the black area). The best results were

obtained for a proximity of 0.50 (Figure 3(C)) and under these

Figure 2. Results for motif detection in the coregulation space.
Each dataset consists of ten coregulated genes from the reference
species (proximity 0.80). Panel A displays the results for a synthetic
dataset in which all sequences contain a site sampled from a high IC
motif (A). Panel B shows the results for a dataset in which all sequences
contain a site sampled from a low IC motif (B) and panel C shows the
results of a dataset where the motif site is missing in two out of ten
sequences. The remainder of the sequences contains a motif site
sampled from the high IC motif. Results were assessed by the
performance measures D1: the number of datasets with an output
out of 100 datasets, D1*RR: the number of datasets with a correct
output and the quality measures PPV (the percentage of true sites
among the predicted motif sites, averaged over all correct outputs) and
Sens (the percentage of the true sites recovered by the algorithm,
averaged over all correct outputs).
doi:10.1371/journal.pone.0008938.g002

Figure 3. Effect of adding orthologs with distinct phylogenetic distances on motif detection in the combined space. Results are
displayed on the retrieval of a low IC motif in a synthetic dataset. Panel (A) shows the results for the coregulation space that consists of ten
coregulated reference genes. The remaining panels represent the results for the combined space that consists of the ten coregulated reference genes
together with their orthologs, also referred to as ten orthologous sets. Each orthologous set consists of five prealigned sequences related through an
equal star topology: the reference sequence with proximity 0.80 and four equally distant sequences with proximities of respectively 0.90 (B), 0.50 (C)
and 0.20 (D). For the measures D1, D1*RR, PPV and Sens see Figure 2.
doi:10.1371/journal.pone.0008938.g003
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optimal conditions, algorithms that use an evolutionary model

clearly outperform the non-phylogenetic motif detection algorithm

in finding high quality motifs (both Sens and PPV). All algorithms

are sensitive towards deviations from the optimal phylogenetic

distance between the added orthologs. Too closely related

orthologs (Figure 3(B)) imply many local optima and this resulted

for all algorithms, compared to the more optimal situation, mainly

in a decrease of the RR. This drop in RR was most obvious for

MEME as it does not use an evolutionary model. PS performed

best (highest RR) for these datasets where the motif is less

pronounced. Adding orthologs that were all very distantly related

(Figure 3(D)) was mainly deleterious for the phylogenetic

algorithms as they depend on the quality of the prealignments:

misalignment of motif sites or gaps introduced within the sequence

of the motif sites make it harder or even impossible to retrieve

these motif sites, which resulted in a lower motif quality (especially

a lower Sens) for PG and PS compared to MEME. In some cases

leaving the distant orthologs unaligned can compensate for the loss

in sensitivity (Table S5 (A)).

In a second set of tests, we examined if adding one distantly

related ortholog to a set of closely related orthologs reduces the

number of local optima and hence improves the motif detection

results. To this end we used for each coregulated reference gene an

orthologous set for which the relatedness was modeled by a ‘star

topology with unequal distances’. Each orthologous set consists of four

closely related orthologs with proximities of respectively 0.80 (the

ortholog of the reference species), 0.90, 0.85 and 0.75 and one

distantly related ortholog with a proximity of 0.20. All results

represented in Table S5 (B) confirmed our expectation: compared

to using orthologous sets containing only the four closely related

orthologs, adding one distantly related ortholog to the orthologous

set of each coregulated reference gene improved the RR of all

algorithms. For the phylogenetic algorithms the number of

datasets with an output (D1) increased, especially for the low IC

motif. The increase in RR was sometimes at the expense of a small

sensitivity (Sens) loss for the predicted motif, which was mainly

caused by the algorithms not being able to detect the motif sites in

the distant orthologs. This was confirmed by specifically

calculating the sensitivity in the distant ortholog (species-

dependent sensitivity, spSens) which was indeed lower than the

overall sensitivity (results in Table S5 (C)). In this example where

the synthetic datasets were particularly easy to prealign (equal

sequence lengths), including the distant ortholog in the prealign-

ment of the orthologous sets improved the results of both

phylogenetic algorithms.

Effect of the number of added orthologs. For each

dataset, we started off with a real set of coregulated genes in

the reference species (the target genes of respectively LexA,

TyrR in E. coli and URS1H, RAP1 in S. cerevisiae) and tested the

effect of gradually adding more distant orthologs to these

reference genes. All results are shown in Table S5 (D). As for

most tests the performance parameters (R1 and RR) reached

their maximum level, the most striking results for both the

bacterial and yeast datasets relate to changes in motif quality. To

visualize this tendency in motif quality observed for both the

bacterial and yeast datasets we used a combined ‘quality’ metric,

the F-value, defined as the harmonic mean of spPPV (species-

dependent PPV) and spSens (species-dependent sensitivity).

Figure 4 displays the difference between the F-value obtained

from searching in the combined coregulation-orthology space

and the F-value obtained from searching in the coregulation

space only. The results are shown for datasets in which for each

coregulated gene the orthologous sets contain respectively two

(Figure 4(A)), four (Figure 4(B)), five (yeast)/six (bacteria)

prealigned orthologs (Figure 4(C)), and five/six unaligned

orthologs (Figure 4(D)). A positive value of the F-value

difference thus indicates a positive effect on the motif quality

of adding orthologs to the coregulation space, while a negative

value indicates the negative effect.

In general the results confirm what we already observed for the

synthetic data (see previous section: ‘Effect of the phylogenetic

distances between the orthologs’): at first, adding orthologous

information has more impact on the results when searching for a

low IC motif than when searching for a high IC motif. Adding

orthologs barely improved the motif quality when searching for a

high IC motif (LexA and URS1H) (Figure 4).

Figure 4. Effect of the number of added orthologs on motif detection in the combined space. Results on the retrieval of both a high and
a low IC motif are displayed for the real datasets: 1) results from the Gamma-proteobacterial datasets are indicated as black curves and 2) those of the
Saccharomyces dataset are indicated as gray curves. Results for the high IC motif are indicated by circles and correspond to those obtained for LexA
(bacterial dataset) or URS1H (yeast dataset), results for the low IC motif are indicated by stars and correspond to those obtained for TyrR (bacterial
dataset) or RAP1 (yeast dataset). The panels represent the results of a dataset containing for each coregulated reference gene two (A), four (B) and six
(for the bacterial datasets) or five (for the yeast datasets) prealigned orthologs (the reference gene included) (C). Panel (D) represents the results of a
dataset containing for each coregulated reference gene six or five unaligned orthologs (the reference gene included). Results were assessed by the F-
value defined as the harmonic mean of the spPPV (the percentage of true sites amongst the predicted motif sites for the reference species, averaged
over all correct outputs) and the spSens (the percentage of the true sites found by the algorithm for the reference species, averaged over all correct
outputs). The reference species are respectively E. coli (bacterial data) or S. cerevisiae (yeast data). The Y-axis represents the difference between the F-
value obtained from searching motifs in the combined coregulation-orthology space and the F-value obtained from searching in the coregulation
space only.
doi:10.1371/journal.pone.0008938.g004
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Secondly, the quality of the motifs retrieved by the phylogenetic

tools is more sensitive towards the type of orthologs that was added

than MEME because their results depend on the correctness of the

prealignments. Figure 4(C) shows that for PS, the F-value

difference dropped drastically when adding the more distantly

related orthologs that can no longer be accurately aligned with the

closely related ones. The effect was more pronounced for the

bacterial datasets that were the most difficult to prealign. As a

result leaving all orthologs unaligned in those cases of misalign-

ment (Figure 4(D)) improved the quality of the motifs retrieved by

PS. All four panels in Figure 4 show that for MEME, the effect of

adding orthologs on the quality of the retrieved motif is rather

small.

Additional tests on synthetic data (see Table S7) ensured us that

the differences in performance between the motif detection

algorithms we observed when adding orthologs could indeed be

attributed to the gradually increased phylogenetic relatedness

between the added orthologs, rather than to the intrinsically

different way PG and PS handle non star like topologies in their

phylogenetic model.

Simulation of motif loss in the orthologous and

coregulation direction. Previous tests showed that adding

orthologs was beneficial, provided that they contain the motif site.

However, adding orthologous sequences from species in which the

mode of regulation is not conserved will increase the noise in the

input datasets [29,30]. Here we simulated this situation by adding

orthologs to a set of coregulated reference genes, but assuming that

all added sequences derived from one species did not contain the

motif site. The relatedness between the sequences in the

orthologous sets was modeled by a star topology with unequal

distances. Figure 5 summarizes these results for a high IC motif (as

given in Table S6). Figure 5(A) shows the reference level of

performance when a motif site is present in all sequences of the

orthologous sets. In the remainder of the panels the results are

shown of replacing in each orthologous set the motif site by a

random site in the sequence derived from either a closely related

species (proximity 0.75, Figure 5(B)) or a distantly related species

(proximity 0.20, Figure 5(C)). As shown in Figure 5(B and C), all

three algorithms were affected by adding orthologs without motif

site. For PG the absence of the motif sites in closely related

orthologs (Figure 5(B)) had a more pronounced negative influence

(drop in RR, PPV and mainly Sens) than when the motif site was

absent in the distantly related orthologs (Figure 5(C)). For PS the

situation is reversed: the presence of distant orthologs without

motif site resulted in a drastic drop in D1 and in the Sens

compared to the reference situation (where the motif site was

present in all orthologs) (Figure 5(A)) or to the situation where the

motif site was absent in the closely related orthologs (Figure 5(B)).

The difference in response between PG and PS towards the

absence of motif sites is related to the intrinsically different way

they treat the prealignments (see also Table S6 for more

information). When the motif site is missing in the distant

orthologs, regions that normally would contain the motif site will

be left unaligned by Dialign or will result in a gapped alignment by

ClustalW. In neither case PS will search for motifs in these regions

of the prealignment while PG will correctly treat these regions

independently and search for motifs in the remaining part of the

prealignment. Missing motif sites in the close orthologs on the

other hand are better handled by PS as it relies on a global

alignment strategy. As closely related orthologs align any way well

over the total length of their sequence, a global alignment is not

too much disturbed by a missing motif site in one of these close

orthologs. For a local alignment this often interferes with the

correct identification of the orthologous regions.

In addition, for PS also the weighting scheme used during the

update step of the motif WM affects its specific behavior towards

missing motif sites in distantly related sequences. Distantly related

orthologs get a higher weight than closely related ones, so a false

positive site in a distant ortholog has a more negative impact on

the WM update than a false positive site in a close ortholog.

For MEME mainly the motif quality (more in particular the

PPV) was decreased by omitting motif sites, but in contrast to what

was observed for the phylogenetic algorithms this effect was largely

independent of the type of ortholog from which the sites were

omitted (Figure 5(B, C)). By setting the number of asked motif sites

equal to the number of input sequences, the number of sites we

searched is overestimated when leaving out motif sites. This effect

of overestimating the number of motif sites affects the quality of

the motif retrieved by MEME that does not internally filter out

low quality motif sites.

As for the coregulation space, we also tested for the combined

space the effect of missing motif sites in the coregulation direction. This

Figure 5. Effect of motif loss on motif detection in the combined space. The results are displayed for a synthetic dataset containing sites
sampled from a high IC motif. Each dataset consists of ten coregulated reference genes complemented with their orthologs, also referred to as ten
orthologous sets. Each orthologous set consists of five prealigned sequences related through an unequal star topology: four closely related orthologs
with proximities of respectively 0.80 (reference ortholog), 0.90, 0.85 and 0.75 and one distantly related ortholog with a proximity of 0.20. Panel (A)
represents the results when a motif site is present in all sequences of the orthologous sets. Panels (B) and (C) display the results when motif loss
occurs in all sequences derived from respectively a closely (q = 0.75) or a distantly (q = 0.20) related species. Panel (D) shows the results when motif
loss occurs in two out of ten coregulated reference genes and in all their corresponding orthologs. For the measures D1, RR*D1, PPV and Sens see
Figure 2.
doi:10.1371/journal.pone.0008938.g005
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situation was mimicked by assuming that two of the reference

genes were not truly coregulated with the other genes. The motif

site is thus absent in these two genes and in their respective

orthologs. Figure 5(D) shows that this had almost no effect on the

results, except for a PPV drop in case of MEME with the same

reason as above.

Figure 5(D) also shows that omitting motif sites in the

coregulation direction has less drastic effects on the results (most

obvious for PG) when also the orthologs are provided than in the

absence of the orthologs (Figure 2(C)), even though some of the

orthologs might not contain the motif site.

Motif Detection in the Orthologous Space
Lastly we assessed the performance of the algorithms in the

presence of only orthologous information. We used a test setup

similar as in the combined coregulation-orthology space, but

instead of using a set of coregulated reference genes complemented

with their orthologs, we used only one reference gene together

with its orthologs (,one orthologous set). The tests consist of

changing for this orthologous set the number of orthologous

sequences and their phylogenetic relatedness (equal or unequal

star topology). We also assessed in real datasets the effect of

gradually adding more orthologs with increasing phylogenetic

distance to the orthologous set.

All results for the synthetic data are shown in Table S8 (A).

Figure 6 shows representative results for the tested algorithms in

detecting respectively a single embedded high (at the top) and low

(at the bottom) IC motif. Figure 6(A) and (B) show the results for

the orthologous set containing respectively five and ten orthologs

related through an equal star topology with proximity 0.50.

Figure 6(C) shows the results for the orthologous set containing five

orthologs related through an equal star topology with proximity

0.90 and Figure 6(D) shows the results for the orthologous set

containing five orthologs related through the earlier described

unequal star topology (see previous section: ‘Motif detection in the

combined space’). All algorithms performed best on datasets with

10 prealigned orthologs related to each other with a proximity of

0.50 (Figure 6(B)). For this setting, PG and PS outperformed

MEME (higher RR and motif quality), especially for the low IC

motif. However, for PS the number of datasets with an output was

extremely low (D1,10). By keeping track of the motif positions

sampled during the early iteration stage of PS, we noticed that the

sampler explored the solution space less for the prealigned input

than when leaving the sequences unaligned. By getting stuck in

non-overlapping local optima for each re-initialization, no

centroid output could be obtained (low D1). The performance of

all algorithms dropped when the number of prealigned orthologs

was lowered to 5 (Figure 6(A, C and D)) in which case PS even did

not longer retrieve an output. Using too closely related orthologs

(Figure 6(C)) resulted in a severe further decrease of the RR for

both MEME and PG (despite lowering the tracking threshold). As

was also the case in the combined space, we can increase the

information level of the datasets by adding one distant ortholog

through the use of a ‘star topology with unequal distances’

(Figure 6(D)): this improved the performance (D1 and RR) of both

PG and MEME considerably compared to the situation with

closely related orthologs of equal phylogenetic distance.

For the real datasets, we used two reference targets genes of

LexA, two of TyrR, two of URS1H and two of RAP1 each

containing exactly one motif site for their respective regulators and

we added to each of these individual genes their orthologs resulting

in 8 datasets in total. As was done in the combined space, these

Figure 6. Results for motif detection in the orthologous space. Results are displayed for a synthetic dataset with motif sites sampled from a
high IC (on top) and a low IC motif (below). Each dataset consists of only one reference gene and its orthologs, referred to as one orthologous set.
Panel (A) and (B) represent the results when the orthologous set contains respectively five and ten prealigned orthologs related through an equal star
topology with a proximity of 0.50. Panel (C) represents the results when the orthologous set contains five prealigned orthologs related through an
equal star topology with a proximity of 0.90 and panel (D) represents the results when the orthologous set contains five prealigned orthologs related
through an unequal star topology. Note that for most tests the PPV equaled the Sens resulting in overlapping dots. For the measures D1, RR*D1, PPV
and Sens see Figure 2.
doi:10.1371/journal.pone.0008938.g006
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orthologs were added gradually with increasing phylogenetic

distances. The results on the real datasets in the orthologous space

(Table S8 (B)) were rather poor and similar to what was observed

for the synthetic data: when the dataset contains too few closely

related orthologs (less than six for bacterial genes and four for the

yeast genes) the algorithms failed in detecting the motif (data not

shown). Increasing the information level of the datasets by adding

extra orthologs resulted in PG and MEME becoming able to

retrieve the motif for at least some of the datasets. For PG the best

results were obtained by including the phylogenetic relatedness by

means of a prealignment. PS totally failed on the real data in the

orthologous space, even for the maximum number of orthologs

(irrespective of whether they were aligned or left unaligned).

Discussion

In this work, we tested the impact of using coregulation and/or

orthologous information on the efficiency of regulatory motif

discovery by two representative motif detection algorithms with an

evolutionary model. We designed appropriate benchmark datasets

and made an exhaustive evaluation of both algorithms together

with MEME, a well-known reference algorithm. Parameter tuning

required a detailed analysis of how parameters influence test

results. This analysis (see also Text S3) together with guidelines

describing how the selection of the best tool depends on the

composition of the dataset is summarized in Table 1.

From our results it appeared that coregulation data allow all

three motif detection algorithms to retrieve the motif if the signal

to noise ratio in the data is high. In real life situations it is more

common to encounter datasets with a low signal to noise ratio, as

biologists often define coregulated gene sets based on results

derived from noisy high throughput experiments. Moreover the

length of the intergenic sequences can be long compared to the

length of the motif sites [31] and often the motifs themselves are

heavily degenerated. Under such conditions, adding orthologous

information to the coregulation space can improve the results.

There seems to exist an optimal phylogenetic distance between the

added orthologs, for which all algorithms retrieved the best results.

This optimal distance corresponds to orthologs that are still

alignable, but show a sufficient level of divergence so that non

functional background sequences are no longer conserved and the

signal of the conserved motif site stands out in the background

sequence. For applications of phylogenetic footprinting, where

motifs are searched for in the orthologous space, there is still room

for improvement. All three algorithms performed poor, partially

because they were originally developed and tuned towards

searching for motifs in the coregulation or the combined

coregulation-orthology space.

Table 1. Summary of user-guidelines.

PROBLEM CONSTRUCTING DATASET PREFERRED TOOLS REMARKS

1. COREGULATION SPACE

Maximizing the signal to noise ratio in
the dataset (i.e. the enrichment of motif
sites in the dataset) improves the success
rate.

Only select sequences that are likely to
contain the motif. Keep the input
sequences as short as possible.
Adding orthologs (see 2: combined
space) improves the success rate at a
low signal to noise ratio.

PS: the ensemble centroid solution
guarantees a high success rate for
datasets with low signal to noise
ratios. MEME: easy to use with
performances comparable to those
of PG and PS.

Both PG and PS provide a statistical
procedure to filter out non-significant motif
sites = . Overestimating the ‘expected
number of motif sites’ affects the
performance less than underestimating
them. For MEME misestimating the
expected number of motif sites affects the
motif quality.

2. COMBINED SPACE

It is crucial to use a phylogenetic tree
that reflects the true evolutionary distances
between the intergenic sequences.

Use a tree based on a neutral evolution
rate or a protein tree with corrected
distances to prevent underestimating
the evolution rate.

Both PG and PS are sensitive to
overestimating the evolutionary
proximity of the orthologous
intergenic regions.

The type of topology (star, tree like
structure) does not affect the performance
of the phylogenetic tools.

The characteristics of the added
orthologs: mainly the evolutionary
distance between them influences the
results by affecting the trade-off between
align-ability of the orthologs and the
information level of the dataset.
Close orthologs: the dataset contains
little information
Intermediate orthologs: this is the
optimal situation.
Distant orthologs: the dataset contains
more information, but the alignment
might get deteriorated.

Close , q = 0.90, the orthologs align
for almost 100%. In this case add at
least one distant ortholog to increase
the information level of the dataset.
Intermediate , q = 0.50, the se-
quences can be aligned and contain
sufficient information (clear phylo-
genetic shadowing of the motif).
Distant , q = 0.20, the prealignment
looks bad. For the phylogenetic tools
it is better to leave the difficult to
align sequences unaligned.

Close: the phylogenetic tools
outperform MEME because of the
multiple local optima in the data.
Intermediate: for this optimal
evolutionary distance the
phylogenetic tools outperform
MEME.
Distant: an unreliable prealignment
deteriorates the results of the
phylogenetic tools. MEME performs
better under those conditions. In
general PG better handles these
difficult to align datasets than PS.

The number of orthologs to be added is
of less importance for the success rate.
Good results can already be obtained with
4 orthologs, provided that they have a
good evolutionary distance.
PG is easier to use than PS: 1) when the
dataset contains a different number of
orthologs per gene, PG adapts the input
phylogenetic tree automatically while for
PS it needs manual interference. 2) PS has a
long running time compared to PG and
MEME.

Motif Loss in a closely related ortholog
or in a distantly related ortholog increases
the noise in the dataset.

Avoid sequences for which one expects
that the mode of regulation has changed
(mostly the distantly related sequences).

PG/PS performs better if the motif
is omitted in the distant/close
ortholog. MEME: not dependent
on the type of ortholog.

3. ORTHOLOGOUS SPACE

The same issues as in 2 are valid regarding
the phylogenetic tree and the character-
istics of the orthologs.

The more orthologs are added, the
better the results.

PG performs best when the
orthologs are prealigned and
slightly outperforms MEME. PS
underperforms in the orthologous
space.

Observing a PG output that only contains
unaligned motif sites indicates that the
input tree underestimates the true
evolution rate. In that case, lower the
proximities.

doi:10.1371/journal.pone.0008938.t001
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In all tests we observed some reoccurring effects that can be

explained by the algorithmic specificities of the applied motif

detection algorithms.

At first we consistently observed that PS outperforms PG and

MEME when the signal to noise ratio drops in the dataset. This is

because PS uses an ensemble of solutions to define the statistically

most overrepresented motif in the dataset whereas both PG and

MEME report a single optimal solution. Especially in the presence

of multiple local optima, such ensemble strategies have proven to

be more successful in estimating the true optimum than searching

for a single optimal solution [32]. However, this advantage of

using an ensemble solution comes at the expense of much longer

running times (e.g. a dataset with 10 orthologous sets each

containing five orthologs had a running time around 8 hours, for

PS, compared to several minutes for PG and MEME).

Secondly, we would expect that modeling the relation between

orthologous sequences when searching for motifs in the combined

or the orthologous space would improve results over those

obtained with MEME, or with PG and PS when leaving the

sequences unaligned. Using an evolutionary model in combination

with a tree that correctly represents the phylogenetic distances

between the used sequences is indeed advantageous when adding

closely related sequences. Closely related sequences that are

treated independently harm motif detection by inducing multiple

local optima as observed for MEME. PG and PS can better handle

this problem of local optima as they constrain the search space by

prealigning conserved regions and by treating those regions

simultaneously. In addition their evolutionary model helps to

distinguish conservation due to evolutionary proximity from

conservation due to functionality as the prealignment itself is

often uninformative [13,33]. Adding distantly related orthologs

usually relieves the problem of the local optima, but often occurs at

the cost of the motif quality as motif sites in the distant orthologs

are harder to find (less similar to the other motif sites) or the distant

orthologs disturbs the prealignment needed for the phylogenetic

algorithms. The accuracy of the prealignment seemed in general

the major bottleneck for the phylogenetic motif finders. PG in

general handles better these difficult to align datasets by

combining a local alignment strategy with a more flexible way of

assigning motif sites. The different way of treating the prealign-

ment by PG and PS also explains the different behavior of PG and

PS towards omitting motif sites in the orthologous direction. For

PS we also observed that the use of a weighting scheme in a non-

ideal situation (incorrect prealignment and missing motif sites in

the distant ortholog) negatively influences the results. This implies

that when using PS, the user can better omit distant sequences for

which he is not sure that the mode of regulation is still conserved.

Lastly, all used algorithms underperform when searching for

motifs in only a set of orthologous sequences. This effect was most

pronounced for PS that only retrieved an output when leaving the

sequences unaligned and suppressing the use of the phylogenetic

model. This failure of PS relates to the fact that the ‘sampling

model-update step’ (see Table S1: ‘Algorithm: sampling’) does not

sufficiently explores the search space in the absence of coregulated

information. PG which uses a different search strategy better

explores the search space in the orthologous space.

Having an insight in this relation between the obtained results

and the working principles of the algorithms provides developers

hints for further improvements. For instance the ease with which a

basic algorithm as MEME can be used largely compensates for the

slightly higher accuracy that is obtained with the more complex

phylogenetic algorithms. Based on our experience we would

therefore suggest of using MEME to get a first insight into the

data. This will help tuning the parameters of the more complex

phylogenetic algorithms that on their turn can further improve the

results e.g. by retrieving more ‘true’ and less ‘false positive’ sites.

User-friendliness is one of the major issues in determining which

algorithm to use. Most of the current phylogenetic algorithms are

still in their developmental phase and do not yet provide the same

user-friendliness as more settled algorithms such as MEME.

Moreover, as the quality of the results of the phylogenetic

algorithms heavily depends on the correctness of the prealign-

ments, developing ways to account for phylogenetic relatedness,

independent of a prealignment is a future challenge. Care should

also be taken when introducing specific ways to model the relation

between the orthologous sequences. For instance, for PS the use of

the weighting scheme has a very counterintuitive effect when motif

sites are missing in the orthologous direction. The development of

algorithms that can better cope with phenomena of ‘motif site

turnover’ during evolution [34] will hopefully result in more

realistic and informative models. Lastly the ensemble strategy of

PS definitely is useful, but can be computationally limiting.
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