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Abstract 

Background 

Several motif detection algorithms have been developed to discover overrepresented motifs in sets of 

coexpressed genes. However, in a noisy gene list, the number of genes containing the motif versus the 

number lacking the motif might not be sufficiently high to allow detection by classical motif detection 

tools. To still recover motifs which are not significantly enriched but still present, we developed a 

procedure in which we use phylogenetic footprinting to first delineate all potential motifs in each gene. 

Then we mutually compare all detected motifs and identify the ones that are shared by at least a few 

genes in the data set as potential candidates.  

Results 

We applied our methodology to a compiled test data set containing known regulatory motifs and to two 

biological data sets derived from genome wide expression studies. By executing four consecutive steps 

of 1) identifying conserved regions in orthologous intergenic regions, 2) aligning these conserved 

regions, 3) clustering the conserved regions containing similar regulatory regions followed by 

extraction of the regulatory motifs and 4) screening the input intergenic sequences with detected 

regulatory motif models, our methodology proves to be a powerful tool for detecting regulatory motifs 

when a low signal to noise ratio is present in the input data set. Comparing our results with two other 

motif detection algorithms points out the robustness of our algorithm. 

Conclusions 

We developed an approach that can reliably identify multiple regulatory motifs lacking a high degree of 

overrepresentation in a set of coexpressed genes (motifs belonging to sparsely connected hubs in the 
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regulatory network) by exploiting the advantages of using both coexpression and phylogenetic 

information. 
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Background 

Several motif detection algorithms have been developed to discover overrepresented motifs in sets of 

coexpressed genes (for instance [1-8]). The rationale behind these methodologies is that a set of genes 

regulated by the same transcription factor should contain in their intergenic regions motifs that are 

statistically overrepresented as compared to their occurrences in unrelated sequences. These 

methodologies have proven to be useful in many applications (for instance [9-12]). However, usually 

their performance rapidly drops as the signal to noise ratio (defined as the number of sequences that 

actually contain the motif versus the number of sequences lacking the motif) in the data set decreases 

[13,14]. This drop in performance is also evident in an assessment study of 13 different computational 

de novo motif detection tools, where the number of correct motifs retrieved was very low in sets of 

noisy data [15]. However, noisy data is mostly the case encountered in sequence sets derived from 

genome wide expression profiles, such as microarrays. The high noise level in such sequence sets 

comes as a result of the processing of the microarray data (for instance, the filtering and clustering 

procedures used), as well as the nature of the biological processes in the cell itself. For instance, when 

comparing mRNA expression between a wild type and a regulator knock out strain, besides the direct 

targets of the regulator, indirect targets are also affected in their mRNA expression in the knock out. In 

such mutants the complete regulatory network acting downstream of the mutated regulator is disturbed. 

Lists of genes derived from these experiments contain targets of more than one regulatory protein 

lowering the relative overrepresentation of a particular motif  

In order to get over this problem, we have developed an approach that exploits orthology information 

besides coexpression, to discover de novo motifs. Orthology information is introduced by phylogenetic 

footprinting which is based on the assumption that among phylogenetically related species, the 

regulating sequences in the upstream regions of orthologous genes are selectively conserved by 
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evolution. Phylogenetic footprinting has been used for the detection of motifs with relative success [16-

23]. In these approaches, however, the orthology information is only used within a set of orthologous 

intergenic regions to create motif models. Recently, a number of algorithms were developed that permit 

for the mutual comparison of the motif models derived from different sets of orthologous intergenic 

regions, followed by the clustering of the conserved regions that share the same regulatory motif. In one 

approach, Jensen et al. [24] applied phylogenetic footprinting using Gibbs Sampling and then grouped 

the conserved regions using a Bayesian clustering algorithm. A similar way of clustering motif models 

derived from phylogenetic footprinting was developed by Qin et al. [25] and Van Nimwegen et al. [26]. 

Another approach is developed by Wang and Stormo [27], where conserved regulatory regions were 

detected using Wconsensus [5] and where the regions sharing the same regulatory motif were clustered 

by gradually merging motif models of different orthologous sets (PhyloCon). In their recent paper, 

Wang and Stormo [28] used a different clustering approach; they would first align the models and 

consequently cluster them according to their alignment scores (PhyloNet). Our methodology is a 

combination of Gibbs Sampling-based phylogenetic footprinting, with two-step clustering (first 

aligning motif models, then clustering based on the alignment score). For phylogenetic footprinting, we 

developed a new algorithm called BlockSampler, which is an extension of the Gibbs Sampling-based 

MotifSampler [2], optimized towards phylogenetic footprinting. For the alignment of the different motif 

models returned from BlockSampler, we developed a second algorithm called BlockAligner, which 

aligns matrices describing conserved regions using a Smith-Waterman approach [29].  

The methodology based on these two new algorithms is capable of detecting motifs with weak 

overrepresentation in a set of coregulated genes. By applying our procedure on gene lists derived from 

real genome wide expression studies, we show its ability to function effectively in noisy data. In this 

context, the use of orthology information compensates for a lower degree of motif overrepresentation 
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We also compared its performance on a test data set, with that of two other motif detection tools: one 

that is exclusively based on coexpression information, AlignACE [7], and another that is most similar 

to our method, PhyloCon [27]. With this comparison, we demonstrated the robustness of our method 

over the two mentioned. Using our method on two real biological data sets proved its biological 

applicability. 

Results 

General Strategy 

Several motif detection algorithms have been developed to discover overrepresented motifs in sets of 

coexpressed genes. However, in a noisy data set the motif might not be sufficiently overrepresented to 

allow detection by classical tools. To be able to recover motifs in such context, we developed a 

procedure in which we first use phylogenetic footprinting to delineate all potential motifs in each gene. 

Then, we mutually compare all detected motifs and identify the ones that are shared by at least a few 

genes in the data set as potential candidates.  

The complete analysis flow is represented in figure 1 and consists of the following steps: starting from a 

list of differentially expressed or coexpressed genes, we find the orthologs for each gene in a number of 

closely related species. The obtained data sets, consisting of the intergenic sequences of orthologous 

genes, are subjected to phylogenetic footprinting using a Gibbs Sampling tool called BlockSampler 

(Step 1). This yields a list of conserved regions (blocks) for each of the orthologous data sets, 

corresponding to all potential motifs. Searching for the motifs shared by at least some of the original list 

of coexpressed genes, we mutually align our blocks with BlockAligner (step 2), and then we construct a 

multiple alignment using the pairwise alignment scores to delineate further the potential regulatory 

motifs (step 3). As our methodology only detects motifs in genes for which orthologous information is 
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available, some motif hits in the initial gene list might escape detection. To recover these motifs, we use 

the motif models we obtained from the previous step to screen the intergenic sequences of the 

remaining genes (step 4).  

Here we give an overview of the main tools we used in our flow. Algorithmic details can be found in 

the methods section.  

BlockSampler is used to detect conserved motifs in intergenic sequences of orthologous genes. The 

algorithm is an adapted version of MotifSampler, a motif detection algorithm based on Gibbs sampling 

[2]. Due to the specificities of the scoring scheme (see methods) the algorithm does not require the 

motif to be present in each single orthologous sequence. Although regions conserved in the entire set of 

sequences will receive a better score, the regions conserved in less than the entire set could still be 

retained. In contrast to the original implementation [30], BlockSampler allows for scoring each 

orthologous intergenic sequence in the input data set with its corresponding species specific background 

model. Since it is often the case with closely related species that big stretches around the motifs are 

conserved  [23,31], BlockSampler was adapted to look for long conserved sequence blocks. 

BlockSampler also allows for the choice of a reference species, usually corresponding to the species of 

interest for which the experimental data are available. The consequence of using a reference species is 

that only the conserved regions that include the reference species will be retained.   

BlockAligner performs a local ungapped pairwise alignment, based on dynamic programming for the 

mutual comparison of sequence blocks, represented as frequency matrices. The scoring scheme of 

BlockAligner is based on the Kullback-Leiber distance. We used a graph clustering algorithm to group 

the blocks shared by multiple genes [32]. This algorithm is optimized to cluster sequences based on 

pairwise alignment scores.  
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Evaluation of the analysis flow on test data 

We applied our analysis flow on test data sets with known motif instances. As shown in figure 2, the 

data sets are made up of sequences with instances for the motifs PhoP, LexA, Fur and MetJ, imbedded 

in a varying number of random sequences. Five collections of data sets were created with an increasing 

number of random sequences, decreasing the signal to noise ratio from 18- 7% for Fur and LexA and 

11- 4% for MetJ and PhoP (dyad motif). For the purpose of evaluating the performance of the 

methodology, we adopted four measurements: recovery rate, number of false positives, specificity and 

sensitivity. The former two are a reflection of how well a true motif model is extracted, while the latter 

two are measurements of the extracted motif’s quality. Specifically, the recovery rate measures the 

number of times a motif model corresponding to a true motif is recovered by the algorithm; the number 

of false positives measures the average number of motif models not corresponding to the true motifs 

recovered by the algorithm; the sensitivity measures the ratio of true motif instances that contributed to 

the recovered motif model; the specificity measures the ratio of false motif instances that contributed to 

the recovered motif model (for details see methods). Note that these values were calculated before the 

last screening step of the algorithm, so that all instances recovered by screening are not included in the 

calculations. 

As shown in figure 3 and the supplementary table 1 [33], our methodology performed well in retrieving 

the MetJ, LexA and PhoP motif models, with relatively low effect of the increasing noise in the data 

set. Only for the Fur motif the recovery rate was low, but with high resistance to noise. Analysis of the 

results showed that during the run of the methodology, the Fur motif instances were clustered in a 

single cluster (step 3), however, together with degenerated blocks lacking Fur instances. The presence 

of such blocks in the subsequent motif delineation step causes the consensus score of the Fur motif 

model to drop below the selected threshold, explaining why it was not frequently recovered using our 
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stringent criteria. 

The number of false positives picked up by the algorithm was low (table 1), ranging between an 

average of 0.5 in the low noise data sets to 0.8 in the high noise sets. This shows the robustness of the 

algorithm against noise in the data. 

Regarding the quality of the motif models recovered, figure 3 shows that the algorithm achieved 

relatively high sensitivity and specificity for Fur, MetJ and LexA, indicating that most true instances 

contributed to the model, and that few false ones did. In the case of PhoP, the sensitivity was low due to 

the fact that the model recovered by our algorithm was the dyad variant, while the two instances of the 

half site variant (bioA and pmrD) did not contribute to the model.  

Importance of the selected species 

To assess the importance of adding a distantly related species to the analysis (in our case Y. pestis), we 

tested to what extent motif instances in this species contributed to the motif models returned by our 

algorithm. Instances of Y. pestis seemed to have contributed to the resulting motif models in more than 

90% of the cases for MetJ and LexA, more than 80% for PhoP, and more than 75% for the Fur motif. 

On the other hand, adding Y. pestis did not decrease the sensitivity of our motif models: motif instances 

that were only conserved in S. typhimurium and E. coli, but not in Y. pestis were also recovered. These 

results indicate that aligned blocks are not dominated by the sequences of the most related species and 

that adding a distantly related species helps delineating the true motifs without decreasing the 

sensitivity, even when motif instances are no longer conserved across all species.  

Comparison with other methodologies 

We compared the performance of our methodology to that of two other motif detection algorithms: 

AlignACE, a Gibbs sampling algorithm designed to detect overrepresented motifs in a set of 
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coregulated genes and PhyloCon, an algorithm that uses information on coexpression and orthology for 

motif detection. 

AlignACE was applied to our test data sets without taking orthology information into account. 

Execution parameters are described in Methods. As displayed in Figure 3, only two out of the four 

motifs could be detected by AlignACE with very low recovery rates. In addition, the performance for 

those two motifs drops significantly when increasing the number of random genes (Figure 3 panel A). 

While the number of false positives seems to be independent of the noise, it is clearly high (varying 

between 16.9 and 18.3 compared to 0.5-0.8 for our algorithm (Table 1)). Regarding the quality of the 

motifs recovered, Fur and LexA, the sensitivity was always high, however, at the expense of a lower 

specificity. No values for sensitivity and specificity were calculated for PhoP and MetJ as these motifs 

were not detected. Our methodology clearly outperformed AlignACE in three aspects: the number of 

true motifs recovered, the quality of the motifs and the robustness against noise. This result is expected 

as AlignACE uses one source of information i.e. genes from one species, while our methodology 

depends on two sources i.e. single species genes and their orthologs. 

 

In the case of PhyloCon, it also failed to recover MetJ and PhoP (figure 3). Although it was previously 

reported that it is possible to detect the MetJ motif in a dataset containing only MetJ intergenic regions 

[27] (confirmed in our lab), PhyloCon clearly failed to do so in the noisy context of our study. For 

LexA, PhyloCon recovered the motif at a rate comparable to that of our algorithm, and only marginally 

affected by the increasing noise in the data. PhyloCon performed well in retrieving the Fur motif, but 

with a recovery rate slightly sensitive to noise. Calculating the false positive discovery rate for 

PhyloCon illustrates that this algorithm is not sensitive to low signal to noise ratios (false positives 

ranging between 5.1 and 5.7) (Table 1). However, the absolute number of false positives is higher than 
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that in the case of our methodology. 

Regarding the quality of the motif models, the Fur motif model retrieved by PhyloCon seemingly 

outperforms our retrieved model both in sensitivity and specificity with hardly any effect for the noise 

in the data set. For the LexA motif, an optimal specificity was obtained but with mediocre sensitivity, 

indicating that the motif model, although frequently recovered, is often based on just two or three LexA 

instances. 

It is important to emphasize that all the values obtained for the performance assessment of PhyloCon 

are biased to its favor in this case. One needs to note that in all the occasions when PhyloCon did not 

converge to a known motif, we retrieved the motif model from a cycle premature of convergence (for 

details see Methods: Benchmarking with other methodologies). Thus, slightly better sensitivities and 

recovery rates of PhyloCon over our methodology need to be interpreted in the light of this fact.  

Again, our methodology proved to be more robust to noise than similarly based algorithms as seen in its 

ability to recover all the true motif models in the data set with very few false positives. 

Evaluation of the analysis flow on expression data 

Besides the test data sets, we applied our methodology on two data sets derived from genome wide 

expression studies. A first data set consisted of a list of 47 differentially expressed genes between a 

constitutive and a null pmrA mutant of S. typhimurium [34]. The PmrAB two-component regulatory 

system is part of a multi-component feedback loop that acts as a major virulence regulator in S. 

typhimurium. The system itself is responsive to Fe
3+

 and mild acid  and senses Mg
2+

 indirectly by 

communicating with the Mg
2+

 sensitive PhoPQ system via PmrD. Applying our analysis flow on the 

intergenic sequences of these coexpressed genes (BlockSampler, followed by BlockAligner and 

clustering) resulted in the detection of two potential motifs. The first motif which was derived from the 

motif instances of the known PmrA regulated genes udg, yfbE, yibD and yjdB, corresponded to the 
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consensus of the biologically validated PmrA motif (consensus CTTAA-N5-CTTAA) [23,35,36]. The 

motif logo is shown in figure 4.A (details about motif instances: Additional data file 2 or [33]) 

Screening the intergenic regions of the remaining differentially expressed genes from the input set with 

this motif model, resulted in the detection of six additional potential PmrA targets. Two of these six 

genes (S. typhimurium (STM1269 and ais) did not contain an ortholog in E. coli or Y. pestis, and in the 

four remaining genes (ybjG, ygiW, yijP and yegH) the PmrA motif was not conserved in the orthologs 

of E. coli or Y. pestis, explaining the reason these motif instances could not be recovered initially unless 

by screening.  

The (direct or indirect) regulation of eight of these reported ten genes by PmrAB is supported by 

evidence from previous studies. Seven of these genes – ais (pmrG), yjdB (pmrC), yfbE (pmrH), ugd 

(udg, pmrE, pagA), yibD, ybjG (mig-13) and STM1269 (aroQ) – are known members of the PmrAB 

regulon that were confirmed in different experiments [23,34-38]. The last gene, yijP (STM4118), was 

also discovered in an in silico screening of this same microarray data by Tamayo et al. [34]. 

We also report two new potential PmrA targets, ygiW and yegH, that were not recovered by Tamayo et 

al [34]. This could be due to the more stringent threshold they used when defining differentially 

expressed genes, than ours (see above).  

In addition to the well known PmrA motif, we predicted yet an uncharacterized motif (consensus 

(T/A)AAGGAAnA) (figure 4.B) which was based on conserved instances present in tufA, yihT and 

STM2186 (Additional data file 2 or [33]). Screening the remaining differentially expressed genes with 

the motif model corresponding to this motif resulted in the discovery of motif instances in two 

additional genes (sopD and STM1472). No similarity between this motif and any of the motifs in the 

existing databases could be found (RegulonDB [39]). 

The second data set was derived from the study of Salmon et al. [40]. E. coli and related species 



 13

respond to oxygen depletion by switching to anaerobic respiration. This transition is mainly controlled 

by the global regulator FNR [41]. Salmon et al. [40] performed genome wide expression profiling 

experiments to identify genes differentially expressed in response to oxygen and controlled by FNR. 

Applying our methodology to 83 differentially expressed genes derived from their study resulted in the 

detection of a motif model corresponding to the well known FNR motif (motif logo: figure 4.C, details 

of motif instances: Additional data file 2 and [33]). The model was based on conserved instances found 

in 4 known FNR regulated genes narX, nirB, ndh and cydA (RegulonDB). The instances present in 

three differentially expressed genes, marked as FNR regulated in RegulonDB (cyoA, dcuC and frdA) 

did not contribute to our FNR motif model. It seems like the degree of conservation of the motif among 

the respective orthologs of these genes was too low to be detected by our analysis flow. However, these 

genes could be retrieved in the screening step. 

 

Discussion 

If we want to be able to get a complete view on the transcriptional network of an organism, revealing all 

regulatory motifs remains one of the main challenges [15]. Despite the fact that several motif detection 

algorithms have been developed and optimized, detection of regulatory motifs with low 

overrepresentation is still difficult using the common motif detection tools. Therefore we developed a 

tool that is able to retrieve regulatory motifs planted in a noisy environment i.e. only a very small subset 

of submitted intergenic regions contains the motif. In a first step of our method, large conserved 

regulatory regions (i.e. blocks) are identified in a set of orthologous intergenic regions (BlockSampler). 

After aligning all these conserved blocks with each other, blocks containing a shared regulatory motif 

are clustered. In a final step, screening of all input intergenic regions permits for the detection of those 

target genes where the motif was not conserved in its orthologs (if existing).  
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To test its reliability, we applied our methodology on a “golden standard” consisting of a set of 

randomly selected, non-related genes among which known targets of the Fur, MetJ, LexA and PhoP 

regulons were hidden. Although these known targets contained previously described motif instances for 

each of these regulators, their statistical overrepresentation in this test set was low (18% going down to 

7% for Fur and LexA, 11% down to 4%  for MetJ and PhoP (dyad motif)). When applying our 

methodology we found that for 3 out of the 4 hidden motifs the recovery rate was above 90% even in 

the presence of a high amount of noisy genes. For the Fur motif it was slightly lower (50% on average) 

because of the lower degree of conservation of the motif model (consensus score of 1.02 for the Fur 

motif versus 1.21, 1.27 and 1.26 for the MetJ, PhoP and LexA motif respectively). Notwithstanding this 

high recovery rate, the number of false positive motifs (i.e. motifs not corresponding to any of the 

motifs hidden in the data set) remained low (an average of 0.50 false positives per run when 10 random 

genes are added versus 0.80 when 50 random genes are added). The achieved quality of the retrieved 

motif models, reflected by the motif model sensitivity (the number of true instances contributing to the 

motif model) and specificity (the number of false positive instances degrading the motif model) 

depends on the characteristics of the motifs; well conserved, non-dyad motifs such as the LexA and 

MetJ motifs are seemingly easy to retrieve and have a high quality; dyad motifs (PhoP and Fur), 

although having high specificity (above 80%), their sensitivity was lower than in the case of non-dyad 

motifs, especially for the PhoP dyad. In the case of the PhoP motif, the low sensitivity is due to the fact 

that it also occurs as a single half site. The score of the alignment of the single half site with the dyad 

falls below the thresholds we used and therefore these single sites could not be recovered by our 

methodology.  

To assess the influence of taking into account orthology information in addition to information from 

coexpression, we applied our methodology to a combined data set of orthologous and coexpressed 
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genes and compared its results to those obtained by applying AlignACE, which is a motif detection tool 

based on Gibbs sampling, to the coexpression data only. Our methodology clearly outperformed 

AlignACE in recovering the true motifs in the data set. In addition, the performance of AlignACE was 

seriously influenced by increasing noise in the data, in contrast to what is observed with our 

methodology. These results indicate that by the incorporation of orthology information, the retrieval of 

motifs with weak overrepresentation (ranging between 11% and 4%) becomes possible.  

In addition to the above mentioned advantage of using the combined sources of information of 

coexpression and orthology, an extra value can be deduced. When using phylogenetic footprinting 

alone on orthologous gene sets of closely related species sharing a large part of the regulatory 

mechanism, long conserved blocks are detected rather than small distinct motifs [23]. Because this 

complicates the delineation of specific motifs, the sequential use of BlockSampler (utilizing orthology 

information) and BlockAligner (utilizing coexpression information) allows for an improved delineation 

of individual regulatory motifs from those long conserved regions across orthologs. 

We also compared our methodology to PhyloCon, as it has a similar strategy as ours. PhyloCon 

identifies conserved regulatory regions (profiles, called blocks in our study) in sets of orthologs based 

on the Wconsensus program. Subsequently, these profiles are merged between different sets of 

orthologs using a greedy algorithm, in order to detect a common regulatory motif. 

PhyloCon was originally developed to detect motifs in a set of coexpressed genes, containing only one 

motif. The test sets used in the original paper usually contain a single motif per data set. As was noted 

by the authors, PhyloCon would perform better on less conserved motifs. Indeed, our results show that 

PhyloCon had a better performance in retrieving the more degenerated Fur motif than the well 

conserved LexA, MetJ and PhoP motifs. Despite this, the overall recovery rate was lower than that of 

our methodology in noisy data sets containing more than one motif. The MetJ and PhoP motifs were 
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not recovered at all. Although the authors stated that their methodology can retrieve regulatory regions 

present in only a small set of genes (e.g. MetJ), in our experience PhyloCon fails to retrieve such motifs 

in a noisy context. In addition, as PhyloCon proceeds cycle per cycle, where in each cycle a new motif 

instance is added to the motif model, the authors suggest that the motif model building process be 

stopped before convergence in order to detect more motifs in a single dataset. However, they do not 

provide a clear stop criteria or heuristics to retrieve the optimal model. In order not to bias our results 

towards a sub-optimal stop criterion, we checked at each cycle whether a motif model was found that 

matched our test data set. If found during at least one cycle, the motif was considered “recovered”. Note 

that this approach is feasible when one knows which motif to look for, but not in the case when a novel 

motif is searched for. This approach led to the bias of the assessment results to the favor of PhyloCon, 

as seen in the higher recovery rate, sensitivity and specificity acquired for PhyloCon over our method.  

As a final proof of concept, we also applied our methodology to two gene sets derived from genome 

wide expression profiling experiments. Firstly, out of 47 differentially expressed genes between  

constitutive and null pmrA mutants of S. typhimurium [34], we could retrieve the expected PmrA motif 

model [23,35,36], and predict the presence of two new putative PmrA targets, ygiW and yegH. We also 

predicted a yet uncharacterized motif of the consensus (T/A)AAGGAAnA that was based on conserved 

instances in the genes tufA, yihT and STM2186. In a second test, using a list of 83 FNR regulated genes 

[40], we could retrieve the FNR motif model based on 4 genes containing a clear FNR regulatory motif.  

Conclusion 

Conclusively, we have developed an approach that can reliably identify multiple regulatory motifs 

lacking a high degree of overrepresentation in a set of coexpressed genes (motifs belonging to sparsely 

connected hubs in the regulatory network) by exploiting the advantages of using both coexpression and 

phylogenetic information. Through comparing our methodology to two other motif detection programs, 
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we show the robustness of our implementation. As a proof of concept, analysis of genome wide 

expression data with our methodology successfully retrieves the present regulatory motifs.  
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Methods 

Input data sets 

The selection of intergenic regions and the construction of species specific background models, relied 

on modules implemented in INCLUSive [30]. Intergenic regions are defined as the non-coding parts 

between two coding sequences. The regions used in this study were derived from the following 

genomes: Escherichia coli K12 [GenBank: NC_000913], Escherichia coli plasmid R721 [GenBank: 

NC_002525], Escherichia coli O157:H7 EDL933 [GenBank: NC_002655], Escherichia coli O157:H7 

[GenBank: NC_002695], Escherichia coli CFT073 [GenBank: NC_004431], Escherichia coli O157:H7 

plasmid pO157 [GenBank: NC_002128], Escherichia coli plasmid pB171 [GenBank: NC_002142], 

Shigella flexneri 2a str. 301 [GenBank: NC_004337], Shigella flexneri virulence plasmid pWR501 

[GenBank: NC_002698], Salmonella typhimurium LT2 [GenBank: NC_003197], Salmonella 

typhimurium LT2 plasmid pSLT [GenBank: NC_003277], Salmonella Typhi CT18 [GenBank: 

NC_003198], Salmonella Typhi CT18 plasmid pHCM1 [GenBank: NC_003384], Salmonella Typhi 

CT18 plasmid pHCM2 [GenBank: NC_003385], Yersinia pestis CO92 plasmid pPCP1 [GenBank: 

NC_003132], Yersinia pestis CO92 [GenBank: NC_003143], Yersinia pestis CO92 plasmid pCD1 

[GenBank: NC_003131], Yersinia pestis KIM [GenBank: NC_004088], Yersinia pestis CO92 plasmid 

pMT1 [GenBank: NC_003134]. 

Close homologs (either orthologs or paralogs) were identified as described in Marchal et al. [23]. 

For benchmarking, different test data were compiled consisting of a core set of genes with known 

motifs (PhoP, LexA, Fur and MetJ) supplemented with sets of random genes varying in number and 

composition. A core set of genes with known binding sites was selected based on the RegulonDB 

database [39] for respectively LexA, Fur, and MetJ. Genes containing known PhoP motifs were 
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selected from Monsieurs et al. [42]. The composition of the core gene set is heterogeneous in terms of 

the number of instances and conservation of each motif. An overview of this composition is given in 

figure 2. For MetJ (3 genes) and LexA (5 genes), the motif instances where conserved in all the species 

used in this study. For 3 out of the 5 Fur regulated genes and 1 out of the PhoP regulated genes, a motif 

instance was not present in Y. pestis. Starting from this core set, different test data were generated by 

gradually adding an increasing number of random genes. To this end, genes having an intergenic 

sequence larger than 100 nucleotides and a sufficient number of orthologs in the organisms of interest 

were selected randomly from the Salmonella genome. By sampling ten times respectively 10, 20, 30, 40 

and 50 random genes and adding these to the core gene set, a total of 50 test sets was created. 

For the construction of the PmrA data set, the data corresponding to an experiment described by 

Tamayo et al. [34] were downloaded from the Stanford Microarray Database [43]. In their analysis, 

Tamayo et al compared the mRNA expression between PmrA-constitutive and PmrA-null strains at two 

different time points (early- and mid-logarithmic phase of growth). As input data set, we selected two 

times 40 genes out of this microarray results that were most up- or down-regulated respectively in both 

conditions. Notice that we used a less stringent threshold than Tamayo et al. [34] who only selected 41 

genes that exhibited a minimal fold change of 2 at both time points. After elimination of those genes 

with in an intergenic region smaller than 50 nucleotides, only 47 out of these 80 genes were retained. 

For the application of our methodology on data sets derived from genome wide expression studies, we 

relied on the data previously published in Salmon et al. [40] to build the FNR data set. All 125 genes 

assigned by Salmon et al. to a cluster affected by a mutation of fnr (i.e. 6 out of the 8 different clusters), 

were combined and used as input data for our methodology. From these 125 genes, 83 genes with an 

intergenic region longer than 50 nucleotides were retained.  
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Analysis flow 

Step 1: Detecting conserved blocks with BlockSampler. BlockSampler is based on the original Gibbs 

sampling algorithm of MotifSampler. Briefly, the Gibbs sampling procedure starts by searching for a 

motif shared by at least 2 sequences and having one occurrence in the reference sequence (the sequence 

of interest, see below). After convergence, short motif seeds are identified. The identification of these 

seeds is predicated on the log likelihood score [2]. This score depends on the degree of conservation of 

the motif and the number of instances detected in the species. Thus, the more species in which the motif 

is conserved and the higher its degree of conservation, the higher is its corresponding score. High 

scoring seeds are subsequently extended using a simple protocol: if the consensus score over a 5-nt 

region adjacent (upstream or downstream) to the current motif seed exceeds a given threshold the motif 

is extended with one nucleotide (in that direction). Detected conserved intergenic regions (i.e. blocks) 

of variable length are eventually reported. To select the most promising hits from the output of 

BlockSampler, we designed a score that is independent of block sequence length, but increases with the 

degree of conservation of the motifs. This normalized consensus score is appropriate because short 

motifs have a higher chance of resulting in a high consensus score. Normalization was done by 

recalculating the consensus scoring according to the following formula: Csad = (L/L+E) Cs, where Csad 

is the normalized consensus score, L is the length of the conserved block, E is an empirical factor (set to 

6) and Cs the consensus score. Different empirical factors were tested on different data sets, and 6 

appeared to give the best balance between block sequence length and conservation. Depending on the 

interest of a particular study, the empirical factor can be enlarged to favor larger blocks. Blocks are then 

ranked according to this normalized consensus score  

 

BlockSampler requires six user-defined parameters: 1) the definition of a reference sequence: the 
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reference sequence is the sequence in which the presence of the conserved block is required (in our 

case, it was set to be Salmonella typhimurium); 2) the number of runs: as BlockSampler is based on 

Gibbs sampling the algorithm should be repeatedly applied on the same input set (set at 100 runs); 3) 

strand: only the plus strand is searched; 4) prior: set at default value of 0.2; 5) threshold of the 

consensus score: only blocks exceeding a consensus score of 1.3 are retained; 6)  minimal motif length: 

minimal width of the block is set to 8.  

As is the case with other Gibbs sampling based motif detection procedures, the same block can be 

detected several times over the different runs of the algorithm. To compile a list of non redundant 

blocks, blocks overlapping for more than 75% were grouped. From each set of overlapping blocks, the 

one displaying the highest (normalized) consensus score was chosen as representative and retained for 

further analysis. Each block is represented by a motif model, in the form of a frequency matrix.  

Step 2: Aligning conserved blocks using BlockAligner. The algorithm uses a local ungapped 

alignment strategy based on dynamic programming to mutually compare conserved blocks represented 

by their respective motif models (frequency matrices M1 and M2). The following additive scoring 

scheme is used: the total alignment score of two motif models is the sum of the individual column 

scores. A column score (S) is defined as the distance between two aligned columns of the frequency 

matrices. As a measure, the Kullback-Leiber distance between two probability distributions is used, 

since the columns of a motif model can be considered to be the parameters of multinomial distributions. 

To make the scoring scheme compatible with dynamic programming, matching columns should score 

positively and non-matching columns negatively. Therefore the minimal match value of the Kullback-

Leiber distance T was introduced. T is a user defined parameter that determines the stringency of the 

alignment. Columns with a score below T receive a negative score, while columns with a score above T 

receive a positive score. As a result, the following score of the alignment of two columns, i and j of two 
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conserved blocks (represented by the frequency matrices M1 and M2) can be calculated: 
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S(i,j) will be equal to T if column i and j of motif models M1 and M2 respectively, are exactly the 

same.  

As a biological motif is often “gapped” i.e. consisting of conserved nucleotides intersected by some 

non-conserved nucleotides, we introduced a small non-match penalty. Remark that this is different from 

a “gap score” in alignment algorithms [29,44], as insertions and deletions are not explicitly modelled 

(we use a local ungapped alignment).  

This leads to the following scheme for the alignment matrix:  

A(i,j) = max(0,A(i-1,j-1) + S(i,j),A(i-1,j-1) - NonMatchScore) for i>1 && j>1 

A(i,1) = max(S(i,1),0) 

A(1,j) = max(S(i,1),0) 

In our setup, BlockAligner was used with the following parameter set: T value = 0.40; minimal length 

of the reported common motif = 6 nucleotides.  

To assess the significance of the results, the alignment procedure was repeated 100 times on the same 

motif models (M1 and M2) after randomly shuffling their columns. The distribution of the scores 

obtained by aligning these randomly shuffled motif models was used to estimate the parameters of an 

extreme value distribution. This background distribution allowed obtaining a p-value for the genuine 

alignment (i.e. assessing the probability of obtaining by coincidence the score observed when aligning 

the unshuffled blocks). Blocks with a p-value below 0.001 were considered significant. 

Step 3: Clustering conserved blocks and delineating regulatory motifs. Conserved blocks shared by 

different orthologous gene sets were grouped using a graph based clustering algorithm TribeMCL [32]. 
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Nodes of the graph represent conserved blocks and edges represent the quality of the alignment 

between these conserved blocks. We used the –log10 of the p-value of the pairwise alignments (see 

previous step) as weight measure for the edges. To prevent inflating spurious relations between blocks 

based on low scoring alignment scores, only alignments with a p-value lower than 0.001 were taken 

into account.  

Based on the pairwise alignment scores between the conserved blocks grouped within the same cluster, 

a multiple alignment is created, which is subsequently converted into a frequency matrix. Such matrix 

representing the multiple alignment of conserved blocks in a cluster can be seen as a model of the 

average motif that is conserved in the intergenic region of several sets of orthologous genes and to 

which all orthologous genes from the original orthologous sets of the cluster contribute. This multiple 

alignment was converted in a frequency matrix. From this frequency matrix, the minimal regulatory 

motif was defined as the 1) the region conserved in at least three reference genes, 2) with a minimal 

length of 6 nucleotides and 3) with a consensus score higher than or equal to 1.10. This minimal motif 

is extended with additional motif positions in both directions until the consensus score drops below the 

threshold of 1.10.  

To construct a motif model specific for the reference species, the multiple alignment is based only on 

the motif instances contributing to the blocks that originate from the reference species. 

Step 4: Genome wide screening for additional targets Screening of promoter regions with the 

obtained motif models is performed using MotifLocator [23,45]. The cut-off value for a screening was 

derived based on the lowest MotifLocator score of known target genes of the corresponding regulatory 

protein. 

Benchmarking with other methodologies 

Running AlignACE. AlignACE can be obtained at the AlignACE website [46]. AlignACE is a Gibbs 
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Sampling algorithm for detecting regulatory motifs that are overrepresented in the promoter regions of a 

set of potentially coregulated genes. Therefore, the test sets used for AlignACE only contained 

information from coexpressed genes i.e. the intergenic regions of the reference genes from S. 

typhimurium sharing a similar motif. Orthologous information was not explicitly used. We run 

AlignACE with default parameter setting except that we give the GC content of species from which the 

intergenic regions are used as input (0.52 for S. typhimurium). AlignACE returns series of motif models 

that are overrepresented in the input promoter regions.  

Running PhyloCon PhyloCon uses the same information sources as our methodology [27]. This 

algorithm also starts from a set of genes that are potentially co-regulated (e.g. derived from microarray 

data) and uses orthologous information to detect novel regulatory motifs. This two-step procedure starts 

with aligning orthologous intergenic sequences and creating position specific scoring matrices (called 

profiles) based on the Wconsensus program [5]. Then PhyloCon compares these profiles generated 

from different genes and identifies the common regions in these profiles using a greedy approach. 

Because PhyloCon is optimised to use the same sources of information (both coexpression and 

orthology) as our methodology, the same test data sets could be used. When running PhyloCon 

(downloaded from [47]), the number of standard deviations was set between 0.5 and 2, but this only 

marginally affected the results. The way PhyloCon works is that the motif model grows cycle per cycle. 

In each cycle a new motif instance is added to the motif model. In the original article no clear stop 

criteria or heuristics were provided, so it is difficult to decide at which cycle an optimal motif model is 

detected. By screening all different cycles of the PhyloCon runs, we looked for runs of which at least 

one cycle shows a match to one of the known motif models. In a single run, more than one cycle can 

contain a motif of interest. For each particular motif the cycle that shows the highest combined 

sensitivity specificity score for the corresponding motif model was used for the calculation of the 
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sensitivity, specificity and false positives.  

Test Run Each test run consisted of applying one of the specified algorithms to 10 test sets of similar 

composition (i.e. same number of random genes is added). The recovery rate of detecting a particular 

motif was defined as the percentage of test sets in which this motif could be recovered. For instance, if 

the LexA motif model was found in 6 of the 10 test sets each of which contained LexA regulated genes, 

the performance was defined to be 60%.  

The exact content of a test run depends on the specificities of the algorithm applied. One test run of the 

methodology presented in this study was defined as applying the complete procedure on the test set 

(100 runs of BlockSampler, BlockAligner, Clustering, motif delineation). A single test run of PhyloCon 

or AlignACE was defined as running once the algorithm on the test set (see running PhyloCon and 

Running AlignACE). 

Performance evaluation To evaluate the performance of the different motif detection algorithms, we 

reported 1) the average recovery rate and 2) the average number of false positives. The average 

recovery rate reports how many times a motif model corresponding to a motif, known to be present in 

the test sets, was found on average in the test runs on different test sets of the same composition. 2) the 

average number of false positives reports how many times a motif model not corresponding to any 

motif known to be present in the test sets, was found on average in the test runs on different data sets of 

the same composition. Motifs known to be present in the data sets were represented by a benchmark of 

curated motif models extracted from the RegulonDB database [39]. A detected motif model was 

considered identical to a benchmark motif model when the Kullback-Leiber distance (as implemented 

in MotifComparison) between the two motif models was lower than 0.65 (default parameter); otherwise 

it was considered as a false positive. The calculation of the number of false positives for AlignACE and 

PhyloCon was done as follows: all motif models that were returned from the AlignACE algorithm, 
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were aligned with the benchmark motif models. If such a motif model did not show similarity to any of 

the four motifs known to be present in the test sets, this motif model was regarded a false positive. For 

PhyloCon, no clear stop criterion is described. For that reason, we only took into account those cycles 

for which a hit with a benchmark motif model was detected. All motifs in these cycles that did not show 

a match with a benchmark motif model were treated as a false positive.  

Motif Quality To represent the quality of the obtained motif models, we calculated motif model 

sensitivity and specificity using the following definitions: 

FNTP

TP
SENS

+
= x 100% 

where TP is the number of true positives motif instances (i.e. motif instances known to be present in the 

data set that contributed to the detected motif model) and FN is the number of false negatives (i.e. motif 

instances known to be present in the data set that did not contribute to the detected motif model).  

For definition of the specificity (SPEC), we used: 

FPTP

TP
SPEC

+
= x 100% 

where TP is defined as stated above and FP is the number of false positives (i.e. motif instances not 

corresponding to any of the known motifs present in the data set contributing to the detected motif 

model). Remark that the definition of FP is dependent on the accuracy and completeness of the existing 

annotation in the motif databases.  

Software availability 

BlockSampler and BlockAligner can be downloaded from our supplementary website [33]. Stand-alone 

versions of BlockSampler and BlockAligner and their corresponding help files are also provided as 

additional data files (BlockSampler: additional data file 3, help file BlockSampler additional data file 4, 

BlockAligner additional data file 5, help file BlockAligner additional data file 6). 
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Figures 

Figure 1  - Flowchart of our algorithm.  

Input data: Based on microarray data, coexpressed genes are identified. For each of these coexpressed 

genes, the orthologous intergenic sequences are identified. Step 1: BlockSampler: within a set of 

orthologous intergenic sequences, conserved blocks are detected and stored as a Position Specific 

Scoring Matrix (PSSM). Step 2: BlockAligner: The resulting PSSM’s corresponding to conserved 

blocks, are aligned to each other with BlockAligner, which is a local alignment tool that assigns a p-

value to each alignment as a quality measure. Step 3: based on all these pairwise comparisons and their 

corresponding p-values, a clustering is performed to group intergenic regions with a similar regulatory 

motif. Based on the BlockAligner results, a regulatory motif model is constructed for each cluster. Step 

4: the detected motif models are used to screen all intergenic regions that were the input for the 

methodology. 

Figure 2  - Composition of test data sets 

Detailed information about the test data set. For each motif, the genes are shown of which the intergenic 

region is used in the test data set. L gives the length of the motif model. Cs indicates the consensus 

score of the motif model created based on the instances in these genes; # indicates the number of genes 

that contain the corresponding motif; the motif logo gives a visual representation of the information 

content of the motif model [48]. 

Figure 3  - Plot of the recovery rate, sensitivity and specificity 

For each of the four motifs (Fur, MetJ, LexA and PhoP), the recovery rate (A), the sensitivity (B) and 

specificity (C) is plotted for each of the three algorithms (BlockSampler: ■, AlignACE: ▲, PhyloCon: 
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♦). At the X-axis of each plot, the number of added random genes is indicated. No sensitivity or 

specificity data for a specific algorithm means that this characteristic could not be calculated due to a 

recovery rate of 0. 

Figure 4  - Motif logos of the motif models resulting from the analysis of expression data 

A. PmrA motif model (PmrA testcase). B. Motif model of unknown regulatory motif (PmrA testcase). 

C. FNR motif model (FNR testcase). 
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Tables 

Table 1  - Number of false positives 

Number of false positives on average per run obtained by applying the different algorithms on the 

respective test sets. Number of false positive motif models is given for each number of added random 

genes (# Random) to the initial test set.  

 

# Random  
New 

methodology 

AlignACE PhyloCon 

10 0.50 17.1 5.4 

20 0.60 18.1 5.4 

30 0.80 17.4 5.1 

40 0.50 18.3 5.7 

50 0.80 16.9 5.3 
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Description additional data files 

The following additional data are available with the online version of this paper. Additional data file 1 

contains the table describing the performance of our methodology, AlignACE and PhyloCon. Additional 

data file 2 contains all details about the instances of the detected regulatory motifs in the biological cases. 

Stand-alone versions of BlockSampler and BlockAligner and their corresponding help files are also 

provided as additional data files (BlockSampler: additional data file 2, help file BlockSampler additional 

data file 3, BlockAligner additional data file 4, help file BlockAligner additional data file 5). 
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