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ABSTRACT

Recognition of genomic binding sites by transcrip-
tion factors can occur through base-specific recog-
nition, or by recognition of variations within the
structure of the DNA macromolecule. In this
article, we investigate what information can be
retrieved from local DNA structural properties that
is relevant to transcription factor binding and that
cannot be captured by the nucleotide sequence
alone. More specifically, we explore the benefit
of employing the structural characteristics of DNA
to create binding-site models that encompass
indirect recognition for the Escherichia coli model
organism. We developed a novel methodology
[Conditional Random fields of Smoothed Structural
Data (CRoSSeD)], based on structural scales and
conditional random fields to model and predict
regulator binding sites. The value of relying on
local structural-DNA properties is demonstrated by
improved classifier performance on a large number
of biological datasets, and by the detection of novel
binding sites which could be validated by independ-
ent data sources, and which could not be identified
using sequence data alone. We further show that
the CRoSSeD-binding-site models can be related
to the actual molecular mechanisms of the tran-
scription factor DNA binding, and thus cannot only
be used for prediction of novel sites, but might
also give valuable insights into unknown binding
mechanisms of transcription factors.

INTRODUCTION

Transcriptional regulation allows cells to adapt their gene
expression in response to changing conditions. Essential in
the process of transcriptional regulation is the interaction
between the transcription factor (TF) and its associated
binding site or motif, upon which the TF will exert its
inhibitory or activating effect. Considerable effort has
been done to model these DNA motifs based on known
binding sites in order to predict novel functional sites.
Position-specific weight (PWM) matrices or consensus

representations are the most frequently used motif
models: they describe the nucleotides which are shown
to be common over a significant fraction of known
binding sites (1). As PWMs or consensus models only
describe the nucleotide sequence, they do not exploit the
information contained within the DNA structure. It has
indeed been shown that TF’s can also recognize binding
sites by their local DNA structure, a type of recognition
that is less dependent on sequence conservation and that is
commonly referred to as indirect binding or intramolecu-
lar read-out (2). Using the information contained within
the DNA structure could therefore result in better classi-
fiers for regulatory binding sites. For example, several
prior studies have successfully used molecular modeling
to predict target sequences for regulatory proteins,
however these methods are restricted in their use as they
require the native structure of the involved protein–DNA
complexes to have been characterized (3–5). Other
approaches circumvent the use of entire structures of the
DNA–protein complex by focusing their model on the
DNA site of the interaction. More specifically, they use
specific structural properties of the DNA that are known
to vary between different DNA regions within the genome
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and that might play a role in the protein–DNA recogni-
tion, e.g. the directional bendability of the DNA molecule
(6). These methods usually rely on different structural
profiles, where each profile represents per position in the
genome the values of a specific DNA structural property.
Based on the structural profiles characteristics of known
binding sites, a classifier can distinguish true from false
positive binding sites, as was first demonstrated by
Karas et al. (7). Furthermore, the combination of these
structural profiles with a higher order machine-learning
classifier has demonstrated improved classification per-
formance of true and false positive binding sites (8).
Although structure-based methods have been shown to
be successful in a cross validation setting on known
binding sites (9–12), their ability to also improve upon
the prediction of novel binding sites in a genome-wide
setting has been largely understudied. In addition
because most previous studies were very limited in scope
(e.g. focusing on few TF’s only) it is still unknown to what
extent local DNA-structural properties provide informa-
tion to predict novel binding sites that cannot be captured
by the nucleotide sequence alone i.e. to what extent a
screening method that exploits local structural properties
is redundant or complementary to a standard screening
method based on PWM.
To study this, we developed a generic framework for

screening any sequence for novel regulatory binding sites
by using the local structural DNA properties of known
binding sites, which we call Conditional Random fields
of Smoothed Structural Data (CRoSSeD). This method
shows an improved overall, performance on a synthetic
dataset and on a large set of Escherichia coli regulons
when compared to previous structure- and sequence-based
methods. We further show that a set of novel predictions
can be made using the proposed method that could be
validated by using independent data sources and that
could not be made using a traditional sequence-based
model.

MATERIALS AND METHODS

Structural properties

The structural profiles can be obtained from the DNA
sequence by using di- or trinucleotide structural scales
(13). These scales rely on the principle that the structure
of a DNA molecule depends largely on its sequence of
nucleotides and that the overall structural properties,
such as flexibility or stability of the helix (14,15), are
caused by the interactions between neighboring base
pairs (13,16). The origin of the values contained within
the scale are either derived from experimental data, such
as X-ray crystallography, or from molecular modeling of a
DNA helix or a DNA–protein complex. Thus each scale
contains complementary information and provides a
unique insight into the structure of the DNA molecule
(13,17,18).
For this implementation, we selected a number of

scales which have been frequently used (14,17,19) and
which capture structural properties that might be of
importance for binding site recognition in prokaryotes

(listed in Table 1). A single scale contains the values
for a single structural property for each possible di- or
trinucleotide. For more details about each of these
structural scales, we refer to their respective references
(6,20–29).

Conditional random fields

For the purposes of this article, the CRF model is trained
using the open-source software tool CRF++(version 0.51)
which was designed to label sequential data (available at
http://crfpp.sourceforge.net/). Among other options, it
allows defining which features the model should use.
The features used in our binding-site model correspond
to the value at each position of the profile, complemented
with higher order features which link each position in the
profile with its neighbors and the position mirrored on the
opposite side of the motif for palindrome modeling. For
more details, see Supplementary Data 1. The input of the
training algorithm consists of the 12 structural profiles
described above expanded with two additional vectors,
one representing the GC content (a dinucleotide scale
assigning a value identical to the number of guanines or
cytosines the dinucleotide contains) and the other contain-
ing the plain nucleotide sequence information. Two exten-
sions (the scale optimization extension and correction
extension) were designed in order to allow the model
training algorithm to deal with some of the specific
aspects of the sample data and the structural property
modeling problem (Supplementary Data 1). Both exten-
sions are applied to the training data before the training of
the final CRoSSeD model. These extensions were
evaluated on the presented datasets and consistently
improved performance of the model (data not shown).

Position-weight matrix

As a reference, the performance of the trained CRoSSeD
models was compared to a PWM model with the same
training set. Each entry in a PWM matrix represents the
frequency of a certain nucleotide at a certain position over
all known binding sites. A pseudo-count of 0.01 was
added to any nucleotides with no instances in the entire

Table 1. Overview of the utilized structural scales

Scale name Structural
property

Order

A-DNA philicity24 A-DNA
conformation

Dinucleotide

DNase-I cutting frequency25 Flexibility Trinucleotide
B-DNA twist26 Flexibility Dinucleotide
Protein-induced deformability6 Flexibility Dinucleotide
Denaturation temperature23 Stability Dinucleotide
Disruption energy21 Stability Dinucleotide
Propeller twist28 Flexibility Dinucleotide
Protein-induced B-DNA twist6 Flexibility Dinucleotide
Stabilization energy29 Stability Dinucleotide
Base stacking energy20 Stability Dinucleotide
Persistence length27 Flexibility Dinucleotide
Z-DNA free energy22 Z-DNA

conformation
Dinucleotide
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training set at any of the positions. Test sequences were
scored with the sum of the logarithms of the frequencies in
the PWM. The corresponding motif logos for the PWMs
of the 27 studied TF s can be found in Supplementary
Data 2.

BioBayesNet

BioBayesNet (30) is a web application based on Bayesian
Networks that allows inclusion of structural profiles. This
methodology demonstrated a higher specificity than a
simple PWM in predicting binding sites of four modeled
motifs in a cross validation setting (11). We used this
application for comparison as it is one of the most
recent and the only publicly available structure-based
methodology. The model was trained using default
settings: all structural properties were used and no prior
information on significant regions or known motifs were
included.

CRFseq

To estimate the increased classification performance of the
CRoSSeD method due contribution of the structural
properties and not due to the implicit higher order nucleo-
tide relationships, a comparison is made with a ‘CRFseq’
method during the cross-validation analyses. The CRFseq
method uses the same training and testing algorithm as
CRoSSeD, except that only sequence data is provided as
input data and, as a consequence, neither of the
structure-specific extensions could be used. Higher order
relationships are also included between adjacent nucleo-
tide positions up until trinucleotides (the highest order of
the structural scales used for CRoSSeD) as these relation-
ships are implicitly present in a structure-based model and
inclusion of this type of positional interdependency has
been shown to improve TF binding site classification
(31,32). Higher order dinucleotide relationships that are
explicitly defined in CRoSSeD, i.e. between positions sym-
metrically around the TF-binding site center, have also
been included in CRFseq. All in all, CRFseq employs
the exact same higher order nucleotide relations as those
implicitly or explicitly present in CRoSSeD, but incorpor-
ates none of the actual values describing the structural
DNA properties.

Datasets

We used both synthetic and biological datasets to evaluate
our model. Each dataset consists of a positive and a
negative set. Each sample in the dataset is a sequence of
41 nt with the center of the binding site corresponding to
the 21st position, which is sufficient to encase the span of
most currently known binding sites (9). From these nu-
cleotide sequences fourteen different input vectors are
generated, which include the 12 structural profiles, the
GC-content vector and the nucleotide vector.

The synthetic positive dataset samples were created so
that they resemble fit a flexibility profile with one region of
high flexibility and one region of high rigidity. This was
achieved by giving the positions in these regions a higher
probability of containing a dinucleotide which corres-
ponded to these structural properties. The negative

dataset consists of 1000 samples with a random nucleotide
sequence.
Real datasets were derived from experimentally con-

firmed binding sites of E. coli [as obtained from
RegulonDB (TF binding sites table, version 6.2) (33)].
We constructed datasets for all TF with more than ten
known binding sites. Positive samples consist of the nu-
cleotide sequences of known binding sites. The negative
samples consist of 1000 non-overlapping sequences that
were randomly sampled from the remainder of the
E. coli intergenic region. All sequence data was derived
from the E. coli K12 genome MG1655 (NCBI release;
NC_000913).

Cross validation

The methods’ performances were evaluated by a 10-fold
cross validation, where a reduced training set was
constructed by randomly leaving out 1/10 of both the
positive and negative sequences from the original training
set. The model trained on the reduced set is subsequently
used to score the left out samples for their similarity to the
positive set. This procedure is repeated ten times, each time
leaving out a different set of samples so that at the end each
sample was left-out exactly once. To remove training/test
set bias from the cross validation, the entire procedure was
iterated five times and the results reported here are averages
of these repeats.

Validation with gene expression

In order to validate novel binding sites predicted by our
CRF model, we used a gene expression compendium con-
sisting of 870 publicly available microarrays (34). In a first
step we retrieved, for each given TF, a set of genes which
are co-expressed with the set of known target genes of that
TF (the seed gene set) across a subset of conditions in the
compendium (i.e. a bicluster). Target genes are defined
here as the genes containing the known TF-binding sites.
Assuming that co-expression with known TF targets
might infer co-regulation, we considered the bicluster
genes that were not part of the original seed gene set as
novel potential targets for the corresponding TF. Using
this potentially co-regulated gene set, we can validate the
predicted binding sites by evaluating whether this gene set
is enriched in high-scoring binding sites predicted by our
model. Biclusters were built with the Iterative Signature
Algorithm (ISA) (35) with default parameters and using
the known target genes for each TF as the bicluster seed.
Any final bicluster that had lost all of its original seed
genes was removed from further analysis. To allow for a
fair enrichment calculation, seed genes were not con-
sidered as members of the biclusters. Gene functions
assigned to the E. coli genome were retrieved from
EcoCyc (36). The functional enrichment of the biclusters
were calculated through a cumulative hypergeometric
function. As the significance cut-off, we used a
Bonferroni corrected value which equals the cut-off 0.05
divided by the number of gene functions found in the
bicluster. The significantly enriched gene functions were
then compared to a list of gene functions related to the
function of the TF or its known regulon. The statistical
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test used for evaluating enrichment of the biclusters with
high-scoring predicted binding sites is a running sum as
described by Keller et al. (37), applied per TF, where the
novel binding site predictions are used to sort a ranked list
of genes not known to be regulated by the TF and then
compared to the first genes upstream in the same operon
as the genes found to be co-expressed in the corresponding
bicluster. The significance of the enrichment is tested by
re-iterating the test several times with a gene set of iden-
tical size randomly selected from the sorted list and
recalculating the running sum. The P-value is then
defined as the fraction of random sampled gene sets that
achieve a higher enrichment score.

Webtool

The structure-based CRoSSeD models used to predict
novel binding sites for the TF’s in this article have been
incorporated into a webtool. This application allows the
input of any sequence to be screened for the binding sites
of a discussed TF. It is currently available at: http://ibiza
.biw.kuleuven.be/crossed/webtool.html. The scripts
utilized in this article to create and use the CRoSSeD
models, can also be downloaded from this location.

RESULTS

CRoSSeD is a supervised classifier based on conditional
random fields’ (CRF) theory (38) that uses structural
properties to model and predict novel binding sites. The
local structural DNA profiles upon which CRoSSeD
relies, are derived from the DNA sequence using di- or
trinucleotide structural scales (39). See Figure 1 for an
overview.

CRoSSeD performance

To evaluate the performance of CRoSSeD and to demon-
strate the difference between a sequence and a structure-
based method, we first created a synthetic dataset with a
positive set of 40 samples that contain a region of both low
and high rigidity (Figure 2a). This synthetic dataset was
used to compare the predictive power of the CRoSSeD
structure-based model to that of a standard PWM
model, BioBayesNet (BBN) and CRFseq using a 10-fold
cross validation. The resulting Receiver Operator
Characteristic (ROC) curve is displayed in Figure 2b.
The CRoSSeD model uncovers the common flexibility
profile present in all positive samples of the synthetic
dataset by assigning high weights to several structural
properties that measure the rigidity of the molecule, such

Figure 1. Overview of the CRoSSeD methodology. The sequence of known TF-binding sites (green) are collected and used to create different
structural profiles by applying structural scales. These structural scales are then used as input for the CRoSSeD model which will create a binding site
model featuring strongly conserved structural profile characteristics in specific regions at the binding sites. These binding site models can then be used
to predict other binding sites (red) for the given TF in the genome.
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as propeller twist, intrinsic B-DNA twist and the propen-
sity for the DNA molecule to exist in the more rigid
A-form (40). The BBN model, which also makes use of
structural properties, has a higher false positive rate for all
sensitivities than the CRoSSeD model. The BBN model
treats the structural properties as a global feature by using
the mean value for the entire sequence, whereas the
CRoSSeD model defines the structural properties as a
local feature at each position in the sequence. Because
the data set contains local regions of respectively high
and low rigidity rather than global ones, these are difficult
for the BBN model to capture. Adding prior knowledge
on significant regions increases the performance of the
BBN model (data not shown). However, when attempting
to model TF-binding sites as is the goal here, the infor-
mation given as prior is exactly the unknown information
what we want to infer by applying the model to our
training data. The predictive power of the PWM model
for this dataset is rather poor and underperforms
compared to the models that exploit the structural
properties. This is to be expected as the dataset contains
structural properties rather than sequence conservation:
the different positive samples show a low-sequence con-
servation, but share a similar flexibility profile which can
only indirectly be modeled by the PWMs if the structural
conservation results in sufficient sequence similarities. The
CRFseq model is also limited to sequence information but
is able to capture di- and trinucleotide relationships, which
can be related to the local DNA structure as discussed
above, and therefore shows a better classification perform-
ance than the PWM which assumes independence between
positions. The CRoSSeD method, which can look directly
at structural conservation, still outperforms the CRFseq.

While the synthetic dataset shows the superiority of
the CRoSSeD model over its sequence-based counterpart
CRFseq, a classical PWM and the structure-based

BioBayesNet in capturing shared local structural proper-
ties, the question remains as to whether the CRoSSeD
model will still outperform the other methodologies
on real datasets, where such features might be less pro-
nounced. Therefore, we evaluated the same three
methods on datasets with known TF-binding sites. So as
to base our conclusions on a wide variety of examples, we
derived data sets for every E. coli TF with more than ten
experimentally validated binding sites.
The datasets contain for each TF all its known binding

sites as positive samples and as a negative set 1000 random
intergenic samples from the E. coli genome. The perform-
ance of each of the compared methods was again
evaluated using a 10-fold cross validation. The predictive
power could then be summarized in the area under the
curve (AUC) statistic (listed in Supplementary Data 3)
for each of the resulting ROC curves. For nineteen out
of the 27 TF datasets the CRoSSeD model outperformed
both the BBN and PWM model. In only two of these 19
cases does the CRFseq model achieve a similar level of
performance as the CRoSSeD model, with the former
being outperformed by the latter in the remainder,
implying that the structural properties provide a boost
in performance that cannot be attributed to the implicit
higher order nucleotide relationships. For these particular
set of TF’s, the representation of the binding site by means
of structural properties as is done in our CRoSSeD model
clearly improves the prediction of binding sites. Our
method thus captures structural properties seemingly im-
portant for TF-binding site recognition that could not be
found or modeled by either the PWM or the BBN models.
For instance, for both the cAMP receptor protein (CRP)
and the purine repressor (PurR) of E. coli, the CRoSSeD
model consistently shows for each specificity level the
highest sensitivity of all methods (results shown in
Figure 3). While the CRoSSeD models are outperformed

Figure 2. (a) Flexibility profiles of all 40 positive synthetic samples (blue lines) as measured by the B-DNA twist scale, (lower values correspond to
more flexible regions). The red line is the average profile. For comparison, the sequence conservation logo is also given for each position. At the
bottom of the figure is the structural characteristic that was simulated (HR: high rigidity, LR: low rigidity). (b) ROC curve displaying the average
result of five 10-fold cross validations for the CRoSSeD (blue line), BioBayesNet (green line), PWM (red line) and CRFseq (cyan line) model when
applied to the synthetic data set.
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by the other methods in a few cases (see Supplementary
Data 4 for details), the CRoSSeD model does demonstrate
a higher sensitivity at very high specificities for almost all
of these cases (Supplementary Figure 2). High-specificities
levels are the most interesting region on the ROC curve in
a prediction scheme, as significance thresholds will be
chosen to limit the number of false positives to reasonable
levels. Thus while the PWM or BBN models present a
better AUC score in some cases, the CRoSSeD model
still displays greater predictive power at high specificities,
where it is intended to be applied.

Screening for novel binding sites

After showing the ability of CRoSSeD to model binding
sites in a cross validation setting, we used it to screen the
genome for novel binding sites of the studied TFs. Models
were trained on the complete training set and used as
input for a genome-wide screening. The same was also
done for the PWM models from the previous paragraph
so as to be able to compare results from the CRoSSeD
screening with those from a traditional screening. The
available web-based implementation of BioBayesNet
does not allow for a genome-wide analysis. Genes contain-
ing predicted binding sites, were considered as novel
targets of the modeled TFs and they were evaluated
using gene expression data and an extensive literature
and database survey (see Supplementary Data 5).
To avoid having to place an arbitrary cut-off on the

screening scores for any of the methods, as well as to
minimize the possible effects of combinatorial regulation
on observed co-expression patterns in the expression data,
we applied the following strategy (see Materials and
methods section for further details): we started by
retrieving a set of genes which were co-expressed with
the known target genes of a given TF under a subset of
conditions in a large compendium of E. coli microarray
data. We considered each co-expressed gene set as

potential novel targets of the TF, provided that the gene
set was enriched in a functional class to which the TF or
its know target genes belong. All but three gene sets were
significantly enriched with a function that could be
directly linked to that of the TF. No enriched gene
function was found for both the IHF and the H-NS
gene set because these TF’s have no clearly defined
function enriched in their target genes. We then tested
to what extent each of these co-expressed gene sets that
represent ‘novel targets of a TF’ were enriched with
binding site predictions obtained by the genome wide
motif screening.

The analysis shows that 14 out of the 23 gene sets were
enriched in high-ranking predicted targets of the
structure-based model with a P-value of 0.05 or less
(Figure 4). The probability of this enrichment occurring
without any relation between the co-expression and the
model screening is 3.2e – 13. Nine co-expressed gene sets
were significantly enriched at the same cut-off with high-
scoring PWM targets, at a random-occurrence probability
of 8.4e – 7. There was substantial overlap between the
sequence- and structure-based predictions as all but one
of the gene sets significantly enriched for PWM-based
predictions were also enriched for the CRoSSeD-based
predictions. This indicates that most novel predictions
made using a PWM-based method can also be made
with a structure-based model, while the reverse is not
always true. A list with the highest ranked predictions
that were validated by the gene expression analysis can
be found in Supplementary Data 5. Almost a third of
the co-expressed gene sets were enriched for highly
ranked sites predicted by the CRoSSeD model but not
for highly ranked predictions obtained by the PWM
model (red pie in Figures 4 and 5a and b). To verify
whether the targets predicted only by the structure-based
method might indeed correspond to true targets, we care-
fully checked the literature for additional experimental
evidence. For example, the structure-based highest

Figure 3. Performance results of the different methods on the CRP (a) and PurR (b) data sets. The ROC curves display the trade-off between the
sensitivity (the fraction of positive samples correctly identified as binding sites) and specificity (the fraction of incorrectly identified negative samples)
of the results on the left out samples obtained at different probability thresholds for five 10-fold cross validations for the CRoSSeD (blue), CRFseq
(cyan line), the PWM (red) and BioBayesNet model (green).
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ranked novel predicted ArgR target that was co-expressed
with known ArgR genes, aroP, had previously been con-
firmed as true ArgR target (41). Moreover, the location
described by CRoSSeD as the most likely binding site cor-
responds to the region where the previously confirmed site
was located. In contrast, aroP was only located in the
fortieth percentile of the PWM ArgR ranked list.
Another prediction of interest is sdhC, potentially
regulated by SoxS, a transcriptional TF involved in
oxidative-stress response. shdC is an integral part of the
TCA cycle that produces NADPH, which plays a signifi-
cant role to reduce oxidative stress (42). Furthermore, it
was found that the expression levels of sdhC drop in a
soxS-knock-out mutant (43). This corresponds well to
the fact that sdhC was found to be co-expressed with
known SoxS target genes and strongly supports our pre-
diction of sdhC as a direct SoxS target. The structure-
based screening ranks the sdhC gene as one of the most
likely SoxS targets at rank 6 while with the PWM
screening this gene only at rank 471, explaining why it
has not been proposed as a SoxS target gene yet. A
detailed list with other literature predictions is available
in Supplementary Data 4.

Figure 4. Overview of the co-expressed gene sets and their enrichment with high-scoring predicted binding sites obtained from respectively the
structure- or sequence-based models. The pie chart represents all found co-expressed gene sets, divided into segments with no significant high-ranking
predictions enrichment (blue) and gene sets that were found to be enriched and if this was for the binding sites predicted by the CRoSSeD (red),
PWM (green) or both models (purple). A table is provided per segment, listing the related TF (in bold) and the most relevant significantly enriched
gene function in the gene sets.

Figure 5. Representation of high-scoring binding site predictions
enrichment in co-expressed gene sets for respectively ArgR (a), SoxS
(b) and PurR (c). Each plot corresponds the entire ranked gene list as
obtained from the screening using the PWM (red) and CRoSSeD
(green) motif models with decreasing confidence from left to right.
Marked are the positions of the genes that were found co-expressed
with the known target genes of the respective TFs.
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The gene sets which were found to be significantly
enriched for both the CRoSSeD and PWM predictions
(purple pie in Figures 4 and 5c), were mostly those for
global TF’s, such as ArcA, FNR, Fis and IHF, and
other well-characterized TFs, such as Fur, PurR and
LexA. These TF’s have been the subject of many studies
due to their importance in the general functioning of the
organism and therefore their binding characteristics have
been well documented. As a result, the sequence-based
model has access to a large amount of high-confidence
training data and is therefore very reliable. We succesfully
predicted three target genes [polB and dinI as targets for
LexA (44) and mntH as a target for Fur (45)] which were
not reported in RegulonDB at the time of the analysis, but
have been confirmed in the meantime and several others
that have already been predicted in previous work. Other
than rediscovering several previously predicted targets for
PurR, a nucleotide biosynthesis TF, such as the purT gene,
we also found several new targets that seem functionally
related to the PurR regulon. Among these were the genes
serA and serC, that code for enzymes necessary for the
biosynthesis of serine (46,47), an important contributor
of one-carbon units for the de novo biosynthesis of
purines (48). Both serA and serC were assigned a high
rank by the CRoSSeD model but very poor rankings by
the PWM. Closer inspection of the predicted binding sites
in serA and serC reveal that they indeed exhibit a lower
sequence homology than other predicted binding sites but
presented several structural profiles that were highly similar
to those of the known PurR-binding sites and were there-
fore still assigned high scores by the CRoSSeD model.

Biological relevance of the CRoSSeD models

We have shown that CRoSSeD, as a structure-based
methodology, can predict valid novel TF-binding sites
which could not be made using sequence-based methods.
In these cases, the structure-based models might have un-
covered certain structural properties that play a biological
role in the recognition of the binding sites by the regulator
protein that remain unseen by sequence-based methods
such as PWMs. This possibility is illustrated by comparing
the used structure-based models to current knowledge of
protein–DNA interaction for two well-studied TF’s,
namely CRP and PurR.
For CRP, it is known that it binds as a dimer and

commonly introduces two kinks in the DNA molecule
near its binding site, a ‘primary kink’ approximately at
position +5/–5 in the motif and a ‘secondary kink’
around position +11/–11 which is located at about half
a turn of the DNA helix from the primary kink (49).
Both kinks result in the DNA-helix being bent towards
the CRP protein complex. This is represented in the
CRoSSeD-binding site model for CRP by the fact that
the largest weights trained by the structure-based method-
ology were assigned to the flexibility property. Figure 6a
shows a weighted average profile for this property.
Because the values in this flexibility scale are derived
from the cutting frequencies of DNase I, which is
known to cut preferentially DNA that is bent towards
the major groove, the sharp rise in the profile around

position 5 will likely correspond to positions where the
DNA is either intrinsically curved or is bendable
towards the major groove. In the case of CRP, this will
be the primary kink which is a bend in this direction, as
shown by crystallography data (50). Similarly, the dip in
the profile corresponds to the position where CRP intro-
duces the secondary kink, now a bend towards the minor
groove due to the intrinsic twist of the DNA molecule.
Also striking is the symmetry in the flexibility profile, cor-
responding to the dimer nature of CRP, even in the areas
which appear to have poor sequence conservation. The
trained model therefore matches well with what is current-
ly known about the mechanism of CRP binding.

It was elucidated from crystal structure data that the
PurR dimer also induces a bend in its binding site upon
binding, though through a mechanism that is different
from that of CRP. PurR is known to induce a single
kink at the central position of the DNA motif by
intercalating a pair of leucine residues into the minor
groove of the CG dinucleotide, resulting in a local disrup-
tion of the DNA structure (51). Despite this severe local
deformation, the structure of the surrounding DNA
sequence displays little to no alteration and it was
shown to remain quite stable (51). This mechanism is
also reflected in the profile. For PurR, the highest
weight was not assigned to a structural profile related to
DNA flexibility as was the case with CRP, but to a struc-
tural property related to DNA stability, the disruption
energy (21) (Figure 6b). The large weights assigned to
the disruption energy of the DNA sequence might corres-
pond to the necessity of the binding site to remain stable,
with as few deformations or deviations from the standard
B-DNA form as possible, in close proximity to the disrup-
tion resulting from the leucine intercalation.

DISCUSSION

In this article, we investigated what information can be
retrieved from local DNA structural properties, relevant
to TF binding that cannot be captured by the nucleotide
sequence alone, and to what extent this information can
be used to model and predict TF-binding sites. We
evaluated TF target predictions made by structure-based
models compared to those of more traditional
sequence-based methods. To this end, we developed a
novel structure-based method which could screen for
TF-binding sites on a large scale and still had a predictive
power comparable, if not greater than, other
methodologies which incorporate sequence information
or structural properties (PWMs, CRFseq and BBN) as
was shown by a cross validation analysis on known
binding sites. PWMs represent the traditional sequence
conservation models and BBN is a Bayesian network
methodology that can include additional information,
such as structural DNA characteristics, apart from the
nucleotide sequence. The improved classification perform-
ance could not be replicated using a sequence-only higher
order CRF method, namely CRFseq, thus demonstrating
that the structural profiles contain additional information
about TF-binding sites, which cannot be directly derived
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from the respective di- or trinucleotides. It is important to
note that there might exist a bias in favor of sequence-
based methods for several known binding site data sets
(i.e. the model training/test data). These binding sites
were often first identified using a sequence-based method
and subsequently confirmed in an experimental setup.
This will create a propensity for the known and confirmed
sites to have very similar DNA sequences and thus might
not be an optimal representation of all true target sites,
considering the importance of indirect read-out for some
TF’s (2). This means that the difference between the PWM
model and the CRF model might be more pronounced
than we were able to show here. Based on the local struc-
tural characteristics of the DNA at the known binding
sites, the proposed method was able to make more confi-
dent predictions about the presence of binding sites in
promoters of co-expressed genes than the sequence-based
methodology. These results support previous theories that
structural DNA information can improve classifier per-
formance by providing a higher level data source that is
explicitly different from the nucleotide sequence itself
(7,8). We could also show that some of the novel,
CRoSSeD predicted binding sites (e.g. serC) have strong
structural similarities while exhibiting relatively low-
sequence similarity. The independent validation analysis
based on co-expression and a literature and database

survey, suggests that some of these sites with low-sequence
conservation are indeed true TF-binding sites. It seems
possible that binding sites can compensate for a poor
conservation of the sequence motif with strong conserva-
tion of particular structural signals. Whether this plays out
in the form of a trade-off, a way to tune binding efficiency,
or whether sequence conservation in these instances is
only a by-product of the necessary presence of certain
structural properties or vice versa, remains to be
elucidated. Furthermore, we were also able to show that
the CRoSSeD models and their inherent structural profiles
are not simply another way to represent the nucleotide
sequence, but that they can be related to the actual mo-
lecular mechanisms of the TF to DNA binding, as was
illustrated for CRP and PurR. Structure-based models
such as the ones created here by CRoSSeD can thus not
only be used for the prediction of novel sites, but they
might be able to give valuable insight into the binding
mechanisms of TF’s for which currently little detailed in-
formation is known.
We limited the analysis in this article to prokaryotes to

allow easier isolation of the contribution of structural
properties to TF binding, as current understanding
seems to indicate that less factors influence the gene regu-
lation of TFs in these organisms. However there is no
reason that the presented method could not be applied

Figure 6. Important features contributing to the CRoSSeD model for, respectively, CRP (a) and PurR (b). In panel (a), the profile corresponds to
the DNase-I cutting frequency (flexibility) profile based on the weights assigned to the CRP model. Plotted in the dark blue line is the weighted
average of the property at each position in the motif and surrounding it in the light-blue area is the standard deviation on this average for each
position. Panel (b) contains the disruption energy profile (stability) based on the PurR model.
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to eukaryotes, as the contribution of indirect readout to
binding-site recognition is known to also occur in these
organisms (2). CRoSSeD is a general framework and can
therefore be applied to any TF for which sufficient reliable
binding site information exists. Furthermore many more
structural scales than those used to train CRoSSeD are
available and in the future the performance of the
models could possibly be further increased by the incorp-
oration of additional structural properties, which could be
specific to a target organism. Additionally, as this method
focuses on structural properties, which is just one of the
aspects used in TF recognition of binding sites, it will most
likely be able to provide complementary information if
combined with methods in the same scheme which use
data from different sources, such as nucleosome binding
information.
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