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Abstract: Inferring comprehensive regulatory networks from high-throughput data is one of the foremost challenges of 

modern computational biology. As high-throughput expression profiling experiments have gained common ground in 

many laboratories, different techniques have been proposed to infer transcriptional regulatory networks from them. 

Furthermore, with the advent of diverse types of high-throughput data, the research in network inference has received a 

new impulse. The use of diverse types of data, together with the increasing tendency of building the inference on 

biologically plausible simplifications, allows a more reliable and more complete description of networks. Here, we discuss 

how the research focus in the field of network inference is increasingly shifting from methods trying to reconstruct 

networks from a single data type towards integrative approaches dealing with several data sources simultaneously to infer 

regulatory modules. 

Keywords: Module network, transcriptional network, network inference, systems biology. 

INTRODUCTION 

 Recent technological advances have dramatically 
changed our views on molecular biology. Whereas a few 
years ago each gene or protein was studied as a single 
genetic entity, new, so-called ‘omics’ technologies (trans-
criptomics, proteomics, metabolomics and interactomics) 
allow analyzing large numbers of genes or proteins simultan-
eously [1-4]. As a result, a gene is no longer studied in 
isolation but as being part of a complex regulatory network. 
In a systems biology approach, a cell is considered a system 
that continuously interacts with its environment. The cell 
receives dynamically changing environmental cues and 
transduces these signals into the observed behavior (i.e., 
change of phenotype or change of physiological response). 
This signal transduction is mediated by the regulatory 
network. Genetic entities located on top of a regulation 
cascade transduce the signal downstream in the cascade via 
protein-protein interactions and/or through chemical modi-
fications of intermediate proteins. The combined interaction 
of these transcriptional regulators activates or inhibits 
transcription of genes and therefore the production of the 
corresponding functional proteins. A complete regulatory 
network thus consists of proteins interacting with each other, 
with DNA or with metabolites to constitute a complete 
signaling pathway [4]. Unraveling these regulatory networks 
has become one of the major challenges of the field of 
interdisciplinary biology, known as “network reconstruction” 
or “network inference” [4-6]. Although the final goal is the 
description of global regulatory networks at systems level, so 
far current data availability mainly allows for high level  
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inference of transcriptional networks; i.e., reconstructing that 
part of the signal transduction network observable when 
measuring mRNA expression based on methods that use 
extremely simplified representations of biological reality 
[4,7]. 

 In this review, we first give a short overview of studies 
that describe the reconstruction of transcriptional networks 
solely from mRNA expression data. Traditional methods for 
network inference from gene expression data consider every 
gene as an individual node in the network, and their goal is 
to infer all interactions between these nodes (Fig. 1A). 
Because of the large search space when treating all genes as 
individual nodes, most of these methods have extensive data 
requirements obviating their practical usage. However, for a 
biologist, the primary interest does not lie so much in 
reconstructing interactions between all genes but in 
recovering the interactions between the main mediators of 
the signal transduction, being the regulators and their target 
genes. Conceptual simplifications that reduce the complexity 
of the inference problem are therefore possible. For many 
genes, those with regulatory functions can be distinguished 
from structural ones by sequence based features, such as 
DNA binding domains for instance [7]. Compiling a limited 
regulator list based on genome annotation before inferring 
the network can therefore drastically reduce the number of 
parameters to be estimated. Recently, there is also a growing 
interest in the modular description of regulatory networks 
[8]. Genes being coexpressed in a subset of conditions and 
undergoing similar interactions within the regulatory 
network can be grouped into modules [9]. Thus, when 
belonging to the same module, genes are assumed to share 
the same properties. Using this representation, all genes 
within a module can be described by the same parameter set 
instead of using a unique parameter set for each single gene 
(Fig. 1B). We will discuss network reconstruction methods 
that are based on this simplified network representation. 
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Fig. (1). Graphical representation of networks. 

A) A complete network: each node corresponds to a single gene and 

is represented by an oval. The arrows correspond to the interactions 

between the genes. For each gene, a unique set of parameters 

(indicated by hexagons and a Greek letter) describes how the 

expression of that gene depends on the expression levels of its 

parents. B) A module network: each node corresponds to a single 

gene, denoted as oval. The arrows correspond to the interactions 

between the genes. Genes that depend on the same parents are 

grouped into modules. For each module, the module parameters 

(indicated by Greek letters) describe how the expression of all 

genes within the module depends on the module’s parents. A single 

set of parameters is thus shared by all genes in the module (groups 

indicated by squares). 

 With the availability of heterogeneous ’omics’ data, the 
problem of network/module inference becomes even more 
tractable. Different ‘omics’ data unveil distinct aspects of 
regulatory networks and integrating them allows a more 
complete insight into the regulatory networks. Here, we will 
focus on how well distinct computational methods for 
inference of transcriptional networks can deal with the 
specific biological features of relevant high-throughput data. 
It should be noted that the methods described throughout this 
review are not organism specific although most of them have 

been field-tested on S. cerevisiae, being the most extensively 
studied model organism [2]. 

INFERRING NETWORKS FROM GENE EXPRESS-
ION DATA 

Using Microarrays for Inferring Networks 

 Microarray experiments used for network inference can 
either be static or dynamic. Static experiments measure gene 
expression after the cell has adapted to its new environment, 
for instance if the cell or pathway under study has reached a 
steady state. Dynamic experiments on the other hand profile 
the changes in expression level during cellular adaptation. 
Although dynamic experiments inherently contain much 
more information on the causal interactions between the 
genes, most algorithms developed so far are not able to 
exploit this information. 

 An important issue that is often underestimated is the 
preprocessing of the gene expression data prior to the 
inference of networks. Although microarray technology 
produces continuous data, many methods require data 
discretization prior to further analysis. Data discretization 
implicitly assumes that in a large compendium of 
microarrays the complete dynamic range of expression 
values was observed for each gene. This complete range can 
then for example be subdivided into discrete levels such as 
high, basal, or low expression level. This discretization step 
is critical due to the potential loss of information. Also 
interpreting discretization levels as over-, basal and under-
expression should be treated with caution, because observing 
the complete dynamic range of a gene can never be 
guaranteed unless a large compendium of data is used. This 
problem is exacerbated as expression values are often 
expressed relative to a reference (i.e., when using two-color 
based array techniques [10]). Large compendia consist of a 
concatenation of separately performed array experiments that 
rarely use the same reference [11]. Interpretation of what is 
over- or under-expressed should always be related to the 
proper reference. 

From Inferring Complete Networks to Inferring Module 
Networks 

 The classical approaches for network reconstruction from 
gene expression data aimed at inferring the interactions 
between all genes. Methods based on Boolean models, 
Bayesian networks, differential equations and hybrids of 
those have been described (for exhaustive overviews we 
refer to D’Haeseleer et al. [12], van Someren et al. [13], and 
de Jong et al. [14]). Although some of these methods have 
lead to biologically relevant findings, in general the size of 
the currently available gene expression data sets does not 
meet the extensive data requirements for most of these 
methods. The number of experimental data points is still 
much smaller than the number of parameters to be estimated. 
This problem of under-determination is aggravated by the 
low signal to noise level of microarray data [15] and the 
inherent stochasticity of biological systems [16,17]. 
Therefore, inferring transcriptional networks using the 
methods described above is usually restricted to small 
networks or to situations where much data is available. 

 However, recently, there has been a major interest in the 
identification of module networks. Reformulating the 
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problem of inferring networks as a problem of inferring 
module networks can greatly simplify the complexity of the 
problem. For this review, we adopt the terminology 
introduced by Segal et al. [18] for modules and regulatory 
programs: a set of genes, coexpressed under all or under a 
particular set of conditions, is assumed to undergo similar 
interactions within the network. Such a gene set is called a 
module. A regulatory program is defined as the set of 
regulators of which the concerted action is responsible for 
the condition dependent expression of the genes in the 
corresponding module. The module network inference 
problem consists of two subtasks, namely identification of 
the modules and identification of the regulatory programs. 

 As module networks are a conceptual abstraction of the 
real networks some biological considerations have to be 
made. Module networks are condition dependent by 
definition, meaning that the genes of a module are only 
coregulated under a specific subset of conditions (i.e. tissues, 
time points, environmental conditions, etc.). In order to grasp 
this context specificity of a module, searching for modules in 
a large compendium of gene expression data not only 
implies identifying sets of coexpressed genes, but also 
selecting the conditions in which the genes exhibit a 
correlated behavior. This context specificity is reflected in 
the combinatorial composition of the regulatory program. 
Due to the combined action of regulators, genes of a module 
behave similar in a condition dependent way [19]. This is 
illustrated by a hypothetical example in Fig. 2 and a real 
example in Fig. 3. The hypothetical example is a 
generalization of our own observations and those described 
by Ihmels et al. [20]. 

 A gene expression dataset can therefore be subdivided in 
several overlapping context dependent modules. Modules 
comprising many conditions can be expected to contain few 
genes (called hereafter seed genes) with a potentially highly 
related function. Indeed, the more conditions genes appear to 
be coexpressed in, the more similar their regulatory program 
tends to be and the more connected their role in the pathway 
becomes. In a module, the number of genes will usually 
increase with a decreasing number of conditions. Obviously, 
there will be more genes that only share part of their 
regulatory program, i.e. the part that is active under the 
tested set of conditions. The fewer the number of conditions 
included in the module one considers, the less stringent the 
requirements on the overlap in the regulatory program 
becomes (Fig. 2). Although these considerations seem trivial 
from a biological point of view, these properties of modules 
and programs make inferring modules and their 
corresponding regulatory program a non-straightforward 
task. 

Identifying Modules Using Gene Expression Data 

 Biclustering algorithms are well suited to identify 
modules. They assign genes to condition dependent and 
potentially overlapping regulatory units, i.e. modules. In 
contrast to classical two-way clustering approaches [21], 
these biclustering algorithms do not group genes and 
conditions independently, but simultaneously, thereby 
identifying subsets of genes that are each correlated under a 
subset of conditions [9]. For the purpose of clustering,  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Hypothetical example of higher order module 

organization. 

C1, C2, C3: represent three unrelated conditions. Ri: represent 

different regulators active in the respective condition dependent 

regulatory programs. R1, R2 are active in C1; R1, R3 are active in 

C3; R4 is active in C2. A) Distinct partially overlapping modules 

exist. Modules consisting of a few genes, tightly coexpressed in 

many conditions can be hypothesized to be associated with a highly 

specific function (horizontal middle panel). They consist of genes 

that respond to the same regulatory program and are coexpressed 

under all conditions. As modules are extended with more genes, the 

number of conditions can be expected to decrease. Genes within 

such extended modules only share part of the regulatory program, 

i.e. the one that is active under the selected conditions (top and 

bottom panel). Which of these overlapping modules will be 

detected by biclustering depends on the specificities of the 

algorithm and the parameter choices when applying the algorithm. 

B) Hypothetical ChIP-chip result for the respective regulators 

obtained from a ChIP-chip compendium measured in C1 only. +: 

binding between target gene and regulator is observed; /: no binding 

is observed. Since only ChIP-chip data of condition C1 exists, the 

data contains much missing and conflicting information when 

extrapolating it to other conditions. Therefore, such information 

should be interpreted with caution for data-integration. See text for 

details. 

microarray experiments are usually organized in an 
expression matrix, where the rows correspond to genes and 
the columns correspond to different conditions. Biclustering 
algorithms can be grouped according to different criteria 
such as whether they are based on probabilistic methods or 
not, whether they allow for overlapping modules or not, 
whether they search for all modules at once or try to identify 
the modules separately in subsequent runs, whether the 
obtained modules are self-consistent or not, and whether 
they use seeds as a starting point for module identification or 
not. From a biological perspective, having an algorithm that 
allows for overlapping modules is desirable (see Fig. 2) and 
the considerations made above). From an algorithmic 
perspective, self-consistency of the module (a criterion 
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introduced by Ihmels et al. [20]) allows for generating 
optimal and potentially overlapping modules instead of 
optimizing the global data partitioning. The use of seeds, 
defined as initial sets of genes around which a module is 
formed, leads to a straightforward extension for data 
integration (see further). The different biclustering 

algorithms together with their most important properties are 
summarized in Table 1. 

                                                        
1 Eisen et al. [76] 
2 Ihmels et al. [20] 
3 Tanay et al. [60] 

Table 1. Comparison of Module Inference Algorithms 
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Eisen  
et al. 1 

Pairwise 
average-
linkage 

clustering 

gene 
expression 

no no no No http://genome-www.stanford.edu/clustering/ 

Ihmels  
et al.2 

Based on 
Signature 

algorithm  

gene 
expression 

yes no yes yes http://www.weizmann.ac.il/home/barkai/modules/ 

Tanay  
et al.3 

Weighted 
bipartite graph 

gene 
expression, 
protein 

interaction, 
growth 

phentotype, 
TF binding 

yes yes yes yes http://www.cs.tau.ac.il/~rshamir/samba 

Gasch and 
Eisen4 

Modified k-
means 

gene 
expression  

yes no no no http://rana.lbl.gov/FuzzyK 

Sheng  
et al.5 

Gibbs 
sampling, 
Bayesian 

network 

gene 
expression 

yes no yes yes http://www.esat.kuleuven.ac.be/~qsheng/query_driven.html 

Segal  
et al.6 

PRM-inspired  gene 
expression 

no yes no yes http://ai.stanford.edu/~erans/module_nets/ 

Cheng and 
Church7 

biclustering gene 
expression 

no no yes no http://arep.med.harvard.edu/biclustering/ 

Getz  
et al.8 

CTWC gene 
expression 

no no yes no http://www.weizmann.ac.il/physics/complex/compphys/ 

Kluger  
et al.9 

Spectral 
biclustering 

gene 
expression 

no no yes no  

Lee  
et al.10 

Bayesian 
network / 

information 
theory 

gene 
expression, 

biological 
annotation 

yes yes no yes http://biosoft.kaist.ac.kr/~dhlee/monet/index.html 

De Bie  
et al.11 

Apriori 
algorithm 

inspired, 
statistics 

gene 
expression, 

ChIP-chip, 
sequence 

data 

yes no no yes http://www.esat.kuleuven.ac.be/~kmarchal/Supplementary_Info_PSB2005/
SuppWebsiteYeastPSB.html 

Bar-Joseph 
et al.12 

Statistics gene 
expression, 
ChIP-chip 

yes no no yes http://psrg.lcs.mit.edu/GRAM/Index.html 

The table compares the different module inference algorithms that were discussed in the review. Columns in the table denote the different attributes for which the methods were 

compared. Method: the basic methodology used, Data types: the different data types which the algorithm combines in the study; Overlapping modules: indicates whether the method 

is able to generate overlapping modules; Module network: indicates if the method generates a module network (module and transcriptional program); Subset conditions: indicates if 
the modules are defined for a subset of the conditions or for all conditions; Integration of additional data: indicates whether it is possible to easily extend the algorithm to 

incorporate data sources other than the data sources described in the study; WWW: a link to the online resources/software of the algorithm. 
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Simultaneous Inference of Modules and Regulatory 

Programs 

 Biologists are not only interested in inferring the module 
composition but also in reconstructing the regulatory 
program. Because the regulatory program determines the 
behavior of the genes in the module and the presence of a 
module reveals which programs are active, it does make 
sense to simultaneously infer the active programs and to 
partition the genes into modules. A first step into this 
direction is the module networks method developed by Segal 
et al. [18], which is inspired by the probabilistic relational 
model (PRM) framework [22-25] (see Fig. 2). 

 While Friedman et al. [26], in the initial applications of 
probabilistic models for network inference, assigned each 
gene as a separate node with its own parameters to the 
Bayesian network, Segal et al. [18] grouped genes into 
modules, where genes belonging to the same module share 
the same parameters and have the same set of regulators. 
This considerably reduces the number of model parameters 
to be estimated and at the same time increases the number of 
data points available for estimating each parameter. For each 
module, the effect of the set of regulators on the expression 
profile of the genes in the module is modeled as a 
transcriptional program by using a regression tree. The 
iterative procedure uses an Expectation-Maximization (EM) 
algorithm to search the optimal regulatory program for each 
module (M-step, using a regression tree for the regulatory 
program) and to subsequently reassign each gene to the 
module of which the program best predicts its behavior (E-
step, using the model score). Although very innovative, the 
approach still has some shortcomings, mainly since it is 
based on gene expression data only. 

 In the original setup of Segal et al. [18], a large set of 
candidate regulators is selected based on their annotation, 
while the regulatory program of each module is composed of 
the subset of candidate regulators for which the expression 
profiles best explains the expression profile of the genes in 
the module. This criterion complicates distinguishing 
between regulators that are actually causing the modules 
behavior (and thus belong to the regulatory program) and 
those for which the observed expression behavior is a 
consequence of the action of the program (and thus belongs 
to the module). Moreover, constitutively expressed 
regulators activated post-transcriptionally will never be part 
of the regulatory program because their expression profile 
will not correlate with the genes in the module. The number 
of regulators for which the expression profile correlates well 
with the profiles of its target genes, is limited anyhow as 
Herrgard et al. [27] showed that in yeast over 80% of the 
tested pairs of expression profiles between regulators and 
targets were not significantly correlated. In the method of 

                                                                                               
4 Gasch and Eisen [77] 
5 Sheng et al., Query-driven biclustering of microarray data by Gibbs 

sampling. Internal Report 05-33, ESAT-SISTA, K.U.Leuven (Leuven, 

Belgium) 
6 Segal et al. [18] 
7 Cheng and Church [78] 
8 Getz et al. [79] 
9 Kluger et al. [80] 
10 Lee et al. [46] 
11 De Bie et al. [58] 
12 Bar-Joseph et al. [57] 

Segal et al. [18], context specificity of the modules is not 
explicitly taken into account (no conceptual biclustering) 
because genes belonging to a module are required to be 
coexpressed over all conditions tested. By definition, a gene 
can only belong to a single module and overlapping modules 
are therefore not possible. Segal et al. [18] applied their 
method to the Gasch et al. dataset [11] (a large scale 
microarray experiment (173 arrays) assessing expression 
changes under various stress conditions in the yeast S. 
cerevisiae) and identified 50 modules involved in various 
processes. They proved the biological potential of their 
method by experimentally validating three of the hypotheses 
that followed from their predictions. 

NETWORK INFERENCE BY DATA INTEGRATION 

Importance of Additional Data 

 Since gene expression data does not contain sufficient 
information to fully reconstruct transcriptional programs, an 
increasing number of inference methods exploit the use of 
heterogeneous data. The most frequently used data types are 
motif, chromatin immunoprecipitation DNA microarray 
(ChIP-chip), and protein interaction data (for more 
elaborated reviews on these data sources see Blais and 
Dynlacht [3], Wei et al. [7], Bader et al. [2]). Each of these 
additional data sources describes the molecular biological 
networks from a different perspective and combining them 
allows a more detailed representation of the networks. 

 ChIP-chip data (or location data) measures in vivo the 
direct interaction between a transcriptional regulator and its 
target genes [28,29] and contains information both for the 
identification of the regulatory programs as for the inference 
of the modules. The regulatory program of a module simply 
consists of the combined set of regulators binding to genes 
within the module under a subset of conditions. On the other 
hand, genes bound by the same regulators are more likely to 
belong to the same module. ChIP-chip data is based on the 
direct physical interaction between a regulator and its target 
genes. Unlike expression data, the use of ChIP-chip data 
allows for the identification of constitutively expressed 
regulators activated by posttranslational modifications as 
members of the regulatory program. Like gene expression 
data, ChIP-chip data is condition dependent and some 
interactions of a regulator with its target genes only occur in 
very specific conditions (for an example of such condition 
enabled regulators (see Fig. 3)). Moreover, the binding of a 
regulator in a specific condition does not necessarily imply 
that the regulator actually regulates the gene under the 
prevailing conditions, for instance in case of combinatorial 
control when the presence of an additional regulator or 
coactivator is required [3]. Hence, a ChIP-chip based 
network of interactions is by definition static, i.e. it shows 
interactions but not the context dependency of these 
interactions [30]. Being tedious to generate, as it requires a 
separate set of microarray experiments per tested regulator 
and per tested condition, it is unlikely that a separate ChIP-
chip compendium will be available for each condition and 
for each transcription factor in the short term. Extrapolating 
the already measured static interactions to infer regulatory 
programs for conditions not primarily tested in the ChIP-chip 
assay, is thus required. However, one should bear in mind 
that a static network of ChIP-chip data will have both 
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missing interactions and false positive interactions that are 
not supported by other data sources obtained in different 
experimental conditions (see Fig. 2). For simple organisms 
such as yeast and prokaryotes, promoter arrays with a cDNA 
probe for each intergenic sequence will be sufficient to 
identify most of the transcription factor binding sites in a 
ChIP-chip experiment. For higher eukaryotes such as human, 
with long intergenic sequences in which the motifs can lie 
far from the genes they regulate (and even in the introns), 
arrays that tile all non-repetitive sequences of the 
chromosome will be needed (Buck and Lieb [29]). Although 
for several model organisms arrays usable for ChIP-chip 
experiments [31,32] are becoming available and cover either 
the whole genome or regions of interest, data are publicly 
available only for yeast so far. 

 A DNA-motif is a short conserved DNA-sequence located 
in the promoter region of a gene that serves as the 
recognition site for a transcriptional regulator. Compared to 
ChIP-chip, motif data contains less information. Motifs can 
help identifying modules (genes with similar motifs should 
belong to the same module) and can give an idea on the 
number of regulators belonging to the regulatory program of 
the corresponding module but contain no information on the 
identity of these regulators. By using sequence based in 
silico techniques to identify motifs, a set of possible motifs 
can be compiled independent of the experimental conditions 
[33-35]. Although the binding of a regulator to a specific 
motif is condition dependent [36], the compendium itself can 
contain all motifs and thus is more complete than a 
compendium of ChIP-chip data (less missing data). The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Biological example illustrating the context dependency of a module. 

The expression datasets used in this example consists of the Gasch et al. [11] and the Spellman et al. [53] datasets. Upper panels show the 

expression profiles of two seeds in the Gasch et al. dataset [11] (blue) and the Spellman et al. dataset [53] (red). The respective module seeds 

were identified by applying ReMoDiscovery [58] on the expression data and on the ChIP-chip dataset of Harbison et al. [55]. Lower panels 

show biclusters extracted from the same expression dataset using the biclustering tool SAMBA [61] via the EXPANDER software [60,81] 

after concatenating both datasets. A) The seed module’s regulatory program consisted of the following regulators, known to be involved in 

cell cycle: NDD1, FKH2, MCM1 [82]. The regulatory module clearly shows a tighter coregulation in the cell cycle related Spellman et al. 

dataset [53] than in the stress related Gasch et al. dataset [11]. Indeed, the bicluster obtained when applying the SAMBA biclustering to the 

dataset, only contained cell cycle related conditions. B) The seed module’s regulatory program consisted of the regulators DAL81, DAL82, 

GAT1 and GLN3, which have been described previously to be involved in nutrient-sensing signaling pathways [83]. Binding of these 

regulators to their target genes was only observed under nutrient deprived conditions (and not in ChIP-chip performed, in rich medium, for 

instance). This module is clearly active in the stress related Gasch et al. dataset [11] but genes showed a non-correlated profile in the 

Spellman et al. dataset [53]. Applying the SAMBA biclustering algorithm resulted in a bicluster containing the conditions of nitrogen 

depletion of the Gasch et al. dataset [11] and selecting genes involved in amine and amino acid metabolism. 
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drawback is that these compendia usually contain many false 
positives (motifs predicted by in silico analysis that are not 
biologically relevant). Although in theory motif compendia 
can be constructed for any organism for which a sufficient 
number of sequence data is available, applying the motif 
detection procedures is far from trivial in organisms with 
long intergenic sequences such as vertebrates. Specialized 
databases exist (such as TRANSFAC [37], regulonDB [38], 
…) that contain information on regulatory motifs of diverse 
organisms. 

 Protein interaction data provide experimental informa-
tion on direct interactions between proteins [39,40]. Similar 
to ChIP-chip data, they are condition dependent and thus 
contain missing data. As with ChIP-chip data they also 
provide information on both the level of module detection 
and regulatory program inference. Mutually interacting 
proteins have a higher chance of being coexpressed, and 
regulators interacting at protein level reveal information on 
the part of the regulatory program that is invisible at 
transcriptional level. Protein interaction data for several 
organisms can be found in databases such as DIP [41] and 
BIND [42]. 

 ChIP-chip, gene expression, motif and protein interaction 
data are all based on high throughput technologies and are 
therefore prone to noise. Measurement and biological noise 
in the individual data sources can be so prohibitive that only 
by combining them, reliable predictions can be made. 
Especially when combining distinct data sources that have 
missing values and false positives, the issue of specificity 
and sensitivity of the different methods becomes of major 
importance. Depending on the biological question (e.g. when 
the prediction is needed for the planning of expensive and 
tedious downstream experiments), one can choose for a more 
or less conservative approach, on the one extreme requiring 
that all data sources confirm each other or on the other 
extreme also allowing making predictions based on partially 
contradicting data (e.g. to discover potentially new 
relationships between genes). Recently, different methods 
have been developed to integrate these heterogeneous data. 
Here we mainly discuss some recent methods for integration 
that have module network identification (emphasizing 
modules and regulatory programs characterized by condition 
dependency) as their main focus. Most of the methods to 
generate the high throughput data described above have 
originally been developed for yeast, partly explaining why 
data availability for other model organisms, even simpler 
ones such as Escherichia coli, is lacking behind. Although 
some of the public data are made available in specialized 
databases, much of the (raw) information is only accessible 
via the supplementary files of the corresponding 
publications. 

Methods for Data Integration 

 Among the approaches developed to infer complete 
networks, in particular probabilistic approaches have been 
extended to integrate heterogeneous data sources. Additional 
data is used to supplement the expression data for example 
by using ChIP-chip data or protein interaction data as priors 
for Bayesian networks [43-48]. Biclustering algorithms that 
start from a set of seed genes to define biclusters (see Table 
1) can, to some extent, integrate heterogeneous data: the 

seeds can be defined by using other data sources and can 
thus be considered as prior information to the biclustering 
algorithm [9]. 

 An example of a deterministic method for data-
integration is the MA-networker algorithm for integrative 
modeling of expression and ChIP-chip data [49]. This 
algorithm uses multivariate regression of mRNA expression 
levels on the genome-wide binding profiles of a large 
number of transcriptional factors (ChIP-chip data) to explain 
to what extent each transcription factor is responsible for the 
observed changes in mRNA expression in a single 
microarray experiment. When performing the regression 
procedure in parallel on a compendium of multiple 
microarray experiments, a transcriptional factor activity 
profile is obtained that implicitly expresses the conditional 
dependence of a specific regulator on the tested experimental 
conditions, indicating whether the regulator is responsible 
for the expression changes per experimental condition. For 
the identification of additional target genes of a specific 
regulator, the method of Gao et al. [49] is original in that, in 
contrast to most other studies, it does not search for genes of 
which the expression profile is highly correlated with the one 
of the regulator but for genes with an expression profile 
highly correlated with the activity profile of the regulator 
(defined as the coupling strength). Although the method 
searches for the condition dependent activation of a gene by 
one regulator it does not yet use this information to 
determine the concerted action of more regulators, i.e. to 
compile complete regulatory programs [49]. MA-networker 
was applied to the yeast ChIP-chip data of Lee et al. [50] and 
a compendium of 750 microarray experiments covering 
different physiological conditions. They found that 58% of 
the genes whose promoter was bound by a regulator were 
true targets and that a set of target genes of which the 
expression profile exhibits a large coupling strength with the 
activity profile of a specific regulator was significantly 
enriched for specific functional categories. 

 The following methods aim at identifying modules and 
regulatory programs. Similar to Gao et al. [49], they treat 
additional data sources with equal importance compared to 
gene expression data (contrary to other approaches where 
additional data sources are treated as prior). 

 Wang et al. [51] propose a heuristic semi-integrative, 
semi-sequential method to combine motif- and gene 
expression data in order to search for target genes of a 
particular transcription factor, the context specificity of the 
transcription factor, and the combinatorial control between 
different regulators. Their method is based on the 
assumption that if a transcription factor is activated under a 
particular condition, its target genes should have similar 
responses as those observed in a perturbation experiment of 
that transcription factor. Regulatory motifs recognized by a 
particular transcription factor, and their corresponding 
targets, are identified with the REDUCER algorithm [52] in 
an experiment where the particular transcription factor is 
perturbed (e.g. overexpressed, mutated). Based on this 
information, a score vector for the perturbation experiment is 
constructed which consists, for each potential target gene, of 
a value that increases with the ratio of overexpression of that 
gene in the prevailing experiment and with the number of 
motifs for the transcription factor of interest. Besides for the 
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perturbation experiment, this vector is also calculated for 
different other microarray experiments. From the correlation 
between these calculated score vectors, the conditional 
activity of the transcription factor is derived. Since in some 
microarray experiments more regulators can be active 
simultaneously, the overlap in their target genes is used to 
derive combinatorial action of different transcription factors. 
Based on a microarray compendium (which comprised the 
Gasch et al. [11] and Spellman et al. [53] datasets), for 28 
transcription factors of which a perturbation experiment was 
available (from the Rosetta compendium [54]), Wang et al. 
[51] identified the corresponding target genes, motifs and 
relevant conditions. 

 Harbison et al. [55] and Kato et al. [56] use a heuristic 
approach that is partially integrative. For each regulator, they 
first compile reliable lists of target genes, based on the 
integrated knowledge from literature [50,55], ChIP-chip 
[55,56], and comparative genomics data [55]. Subsequently, 
the search for statistically overrepresented motifs in the 
promoter regions of these target genes results in the 
identification of the motif tags characteristic for each of the 
regulators. Kato et al. [56] go one step further in 
reconstructing the modules and programs by searching for 
statistically overrepresented motif combinations. Genes of 
which the promoters contain a particular motif combination 
and that share a similar expression profile over time 
comprise a module. In a final step, regulatory programs are 
identified based on the ChIP-chip data by determining the 
identities of the regulators that are statistically 
overrepresented in the genes of the respective modules. 
When applying their method to the ChIP-chip data of Lee et 
al. [50], they specifically focused on the cell cycle and could 
identify most of the previously described cell cycle 
transcriptional complexes. 

 A conceptual extension to the previously mentioned 
heuristic methods is proposed by Bar-Joseph et al. [57] and 
De Bie et al. [58]. Regulatory programs and module seeds 
are defined in a joint learning step based on ChIP-chip and 
gene expression data [57], or based on ChIP-chip data, gene 
expression data, and motif data [58]. In the former approach 
(GRAM), seeds are defined by identifying sets of genes with 
a common set of transcription factors and having a highly 
correlated expression profile (determined by microarray 
analysis). In the latter approach (ReMoDiscovery), module 
seeds are maximal gene sets of which the expression profiles 
are highly similar and that have a minimal set of regulators 
and motifs in common [58]. The shared set of seed 
regulators and motifs corresponds to the regulatory program 
determining the observed coexpressed behavior of the 
module seed genes. Searching for maximal gene sets that 
meet these requirements on all three datasets translates into a 
combinatorial problem, which is solved by a modification of 
the APriori algorithm [58]. Because the initial seed 
discovery in both approaches relies on stringent criteria 
(information in all datasets has to be mutually consistent), 
the seed modules are likely to underestimate the true module 
size. For this reason, both algorithms use a second module 
extension step. Bar-Joseph et al. [57] extend the module 
seeds by first identifying candidate genes with an expression 
profile sufficiently similar to the seed profile and with a 
sufficiently low p-value for the binding of each of the 
individual regulators of the module seed. A combined P-

value based on the individual p-values for all module 
regulators is calculated for each of the candidate genes 
passing these requirements and the gene is added to the 
module if the combined P-value is sufficiently low. 
ReMoDiscovery contains a second module extension step 
where additional genes are identified for which the 
expression profile is highly correlated with that of the seed 
genes. The optimal size in number of genes of the module is 
determined by the correlation coefficient resulting in a 
module with the largest enrichment in seed motifs and 
regulators. The regulatory modules detected by both 
approaches can be used as input sets for motif detection 
tools. Note that both approaches [57,58] yield few false 
positive modules, but they fail to identify modules if not all 
data sources separately confirm the presence of a seed 
module. Neither Bar-Joseph et al. [57] nor De Bie et al. [58] 
in its original implementation explicitly take into account the 
conditional nature of the regulatory program. De Bie et al. 
[58] solve the problem by grouping microarray experiments 
performed in the same experimental condition and applying 
the algorithm to each group of microarrays separately. Only 
when the regulatory program is active in the specific dataset, 
the seed module can be extended. Both methods were 
applied to the yeast ChIP-chip compendia and various 
microarray experiments in yeast. Although using slightly 
different datasets, both groups identified a similar number of 
modules, involving a comparable number of regulators. By 
performing gene specific ChIP-chip experiments, Bar-Joseph 
et al. [57] experimentally validated a random selection of 
predictions proving the potential of their approach. 

 Xu et al. [59] extended the module networks framework 
of Segal et al. [18] (see higher), by incorporating ChIP-chip 
data. For identifying the most likely candidates of a 
regulatory program, they select regulators for which the 
expression profile shows a high mutual information with the 
one of the module genes (comparable to the approach of 
Segal et al. [18]) and regulators with high binding 
probabilities based on ChIP-chip data. The binding 
probability between a regulator and its target genes is also 
regarded as a structure prior to the Bayesian score, which 
scores the inferred module networks. As a result, the score of 
the resulting network is both increased when there is a high 
correlation between the expression profile of the regulator 
and the module genes (when calculating the regression tree 
that derives the regulatory program) and when the binding 
probability between a regulator and its targets is high (in the 
form of a structure prior). This joint scoring allows different 
weaker indications from separate data sources to be joined to 
a significant indication, to indicate for example that a gene is 
part of a module. It also allows constitutively expressed 
regulators with low location probability to be part of the 
regulatory program. As with the method of Segal et al. [18], 
conditional dependence of the regulatory programs is not 
taken into account. Using the ChIP-chip compendium of Lee 
et al. [50] and the microarray experiments of Gasch et al. 
[11] and Spellman et al. [53], Xu et al. [59] identified 50 
modules involving 86 regulators covering a wide range of 
cellular/physiological processes. 

 Another method for module detection is SAMBA, 
developed by Tanay et al. [60], which uses a bipartite graph 
based representation of the data where one subset of nodes 
represents genes and the other subset represents the 
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properties derived from the distinct heterogeneous data. An 
edge represents the assignment of a property to a gene with 
the weight of the edge being indicative of the statistical 
strength of the assignment. The problem is then reduced to 
finding ‘heavy’ subgraphs in a weighted bipartite graph. A 
graph-based biclustering algorithm [61] is used to identify 
modules (i.e. a set of genes that show similarities only in a 
subset of properties). Like for other biclustering algorithms, 
overlapping modules are allowed. This method thus fully 
exploits all data sources, allows dependency of the program, 
not only conditioned on the expression data but also on the 
other data sources. This is important, considering that ChIP-
chip or protein interaction data, assessed under specific 
conditions might not be supported by, for instance, 
expression data measured under different conditions. One 
drawback of this method, from a biological point of view, is 
that while the uniform representation of the heterogeneous 
data allows the automatic identification of modules, the 
compilation of the regulatory programs is not automatically 
derived from the analyses. It is also unclear how the different 
sets of properties of the genes should be weighted compared 
to one another, while this will have a profound impact on the 
identified modules. Integration of additional data sources is 
straightforward as long as the data can be described as gene 
properties. Tanay et al. [62] identified 1200 significant 
modules in a large yeast compendium of heterogeneous 
datasets. Eighty six percent of the modules were based on 
more than one dataset and for the construction of 68% of the 
modules at least three different data sources were used, 
indicating the importance of using complementary 
information. 

 Besides the data integration methods mentioned above, 
there are many other methods that focus on different aspects 
of regulation, such as the combined identification of 
regulatory motifs and coexpressed genes (e.g. [52]). 

Comparison Between Representative Tools 

 Regarding their biological relevance, most methods 
described above have been applied to public data sets on 
yeast, integrating, depending on the specificities of the study, 
the ChIP-chip compendium data of Lee et al. [50] and 
Harbison et al. [50,55], motif data [33], protein interaction 
data [63], and various public microarray experiments (most 
often including the study of Gasch et al. [11], which profiles 
gene expression in various stress conditions and the study of 
Spellman et al. [53], describing the dynamic changes in gene 
expression during yeast cell cycle; see Table 1). It is 
heartening to see that each of these studies is able to retrieve 
many of the known modules and programs in yeast. The fact 
that each study uses different data sets as input obviates a 
nonbiased comparison between them. However, as each of 
these methods aims at detecting global regulatory modules 
and was applied to the same biological system, some overlap 
in the results is to be expected. Indeed, among all modules 
discovered by the distinct methods, those involved in 
processes related to ribosome biogenesis, cell cycle, stress 
response, amino acid metabolism/biosynthesis, and 
energy/carbohydrate metabolism seem to frequently reoccur 
(see Table 2). This overlap in detected modules is partially 
due to the fact that most studies used cell cycle and stress 
related datasets, but also because some processes seem to act 

globally and appear active under very diverse conditions (for 
instance, ribosome biogenesis). 

 Despite this overlap, the final number of detected 
regulatory modules, the number of genes contained within 
them and the size of the corresponding programs varies 
significantly between the different methods. Much of what is 
detected depends on the characteristics of the 
implementation and the specific choice of the parameter 
settings. In general, solutions are most similar between Bar-
Jospeh et al. [57] and De Bie et al. [58], while these are 
moderately different from Tanay et al. [60] and most 
different from the solutions obtained by Xu et al. [59] (see 
Table 2 for a few examples). However, similarity between 
solutions is not a proof of biological truth, but rather a 
reflection of whether similar aspects of the data are 
uncovered by the approaches compared. For instance, the 
fact that Xu et al. [59] cannot detect cell cycle modules 
indicates that regulators of cell cycle, which are prominently 
posttranscriptionally regulated, are harder to detect using 
their approach. However, in contrast to the approaches of De 
Bie et al. [58] and Bar-Joseph et al. [57] that rely heavily on 
ChIP-chip data, Xu et al. [59] are able to identify the 
involvement of many regulators in the regulatory program 
for which no ChIP-chip data are available yet. Table 2 
compares the composition of similar global regulatory 
modules across different studies. It illustrates well that no 
single best definition of a biological module exists. Each 
method detects a slightly different instance of a module 
involved in the same cellular process. Usually, a larger 
regulatory program implies a module with more conditions 
and less genes, and vice versa. What is still lacking in each 
of these methods is a comprehensive overview that gives an 
abstract representation of how modules are contained within 
larger ones and how this relates to the changing complexity 
of the regulatory program. 

 A method’s applicability to some extent also depends on 
its user-friendliness. Some methods might require extensive 
parameter fine-tuning. This fine-tuning is facilitated if 
parameters have a well-defined biological meaning or if 
changing them changes the outcome in a predictable way 
(see Table 3). Table 3 shows the different user-definable 
parameters of each algorithm, a short description, the default 
value, and a robustness range around the default values. The 
robustness range defines the range of parameter values 
where the resulting set of modules is still sufficiently similar 
to the set of modules for the default parameters. Besides the 
robustness analysis, we performed for different algorithms 
mentioned in the text a minimal benchmark of running times 
by using gene expression data of Gasch et al. [11] and ChIP-
chip data of Harbison et al. [55] of which for both datasets, 
respectively the first 50, 70 and 100 columns were used for 
benchmarking. Running times for GRAM were 20-40 sec for 
datasets with over 6000 genes and up to 70 regulators. 
However, running time became prohibitively slow when 
more regulators were included in the ChIP-chip dataset: over 
20 min (terminated) for a dataset with 100 regulators. 
SAMBA and ReMoDiscovery performed well on these 
datasets (less than 1 minute). The experiments were 
conducted on a laptop with a Pentium 4 Mobile 1.8GHz 
processor and 768MB RAM memory. 
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NECESSITY FOR PROPER BENCHMARKING 

 Solving network inference problems usually requires 
complicated algorithms with many tunable parameters. 
Moreover, due to the computational complexity of 

                                                        
13 De Bie et al. [58] 
14 Spellman et al. [53] 
15 Bar-Joseph et al. [57] 
16 Tanay et al. [60] 
17 Xu et al. [59] 
18 Gasch et al. [11] 

reconstructing regulatory networks, many algorithms only 
find local optimal solutions instead of the global optimum. 
Extensive validation is needed to test the influence of 
parameters on the results, and to assess the extent to which a 
found solution approximates the global optimal solution. 

 Testing the performance of network inference algorithms 
requires repeatedly applying them to large data sets, obtained 
from many experimental conditions and derived from 
different well-known networks. Unfortunately, experimental 
data sets of the appropriate size and design are usually not 

Table 2. Comparison of the Composition of Global Regulatory Modules, Identified by Different Methods 

 

Study Module ID Module size Most enriched functional category Regulatory program 

Cell cycle     

De Bie et al.13 6 (Spellman et al.14) 113 genes DNA synthesis and replication Swi4; Swi6; Mbp1; Ash1 

 7 (Spellman et al.14) 186 genes DNA processing Swi4; Swi6; Mbp1; Stb1 

Bar-Joseph et al.15 78 11 genes Cell cycle and DNA processing  Swi6; Mbp1 

 102 8 genes Cell cycle and DNA processing  Swi4; Swi6; Mbp1 

Tanay et al.16 619 29 genes  
(69 conditions) 

Mitotic cell cycle Mbp1; Swi4 

 419 12 genes  
(135 conditions) 

Mitotic cell cycle Swi4; Swi6; Mbp1; Fkh2; Ste12 

Xu et al.17 21 40 genes Cell cycle (G1/S) and DNA replication Cln2; Clb5; Zds2; Swe1; Clb6 

 30 12 genes  Cell cycle (G1/S) and signaling II Met18; Mad1; Hir2; Yjl206C; 
Syg1; Sum1 

Amino acid 

metabolism / 

biosynthesis 

    

De Bie et al.13 48 (Gasch et al.18) 2 genes Amino acid metabolism Gcn4; Leu3 

 5 (Gasch et al.18) 100 genes Nitrogen and sulfur utilization Gcn4; Cbf1; Met32 

Bar-Joseph et al. 15 13 14 genes Amino acid biosynthesis Gcn4 

 86 5 genes Amino acid biosynthesis Gcn4; Arg80; Arg81 

Tanay et al. 16 848 112 genes  
(93 conditions) 

Amino acid metabolism Gcn4  

 3057 16 genes  
(148 conditions) 

Amino acid biosynthesis Gcn4; Arg80; Arg81 

Xu et al. 17 20 36 genes Sulfate amino acid, and purine metabolism 
and Ty ORFs 

Hap1; Pdr3; Met32 

 22 29 genes Amino acid and purine metabolism Gat1; Xbp1 

Respiration     

De Bie et al.13 2 (Gasch et al.18) 2 genes Respiration Hap1; Hap2;Hap4;Hap5;Gln3 

 2E (Gasch et al.18) 30 genes Energy Hap2; Hap4; Hap5 

Bar-Joseph et al. 15 18 15 genes Mitochondrion Hap4 

 57 7 genes Respiration Hap3; Hap4 

Tanay et al. 16 1103 76 genes  
(83 conditions) 

Energy derivation by oxidation of organic 
compounds 

Hap4 

 3103 18 genes  
(112 conditions) 

Aerobic respiration Hap2; Hap4 

Xu et al. 17 Not detected  -  -  - 

Per study, two representative modules are shown, enriched for the indicated functional class. Study: the original study in which the modules were detected, Module ID: ID referring 

to the module in the original studies (from the respective websites with supplementary information). Module size: the number of genes in the regulatory module. Most enriched 

functional category: indicates for each regulatory module the most enriched functional category (as found on the respective websites). Regulatory program: set of the regulators 

corresponding to the modules identified by each of the studies. 
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available and knowledge about the true underlying biological 
networks is often incomplete. As a consequence, algorithm 
validation is often limited to confirming previously known 
interactions in the reconstructed network when performed on 
experimentally obtained data. However, estimating the 
number of false positive interactions predicted by the 
algorithm is very difficult, since there are no databases in 
which absent interactions are described. The only proper 
validation strategy is to perform wet-lab experiments on a 
sufficiently large set of predicted interactions and predicted 
absent interactions to confirm or deny the presumed 
interaction. It is clear that such an approach is impractical, 
time-consuming and sometimes infeasible. Moreover, it is 
highly desirable to repeatedly test an algorithm with different 
parameter settings and on different datasets. Usually only 
data about a few networks are available, which might bias 
algorithm design and validation towards the specificities of 
these datasets and networks. 

 Due to these limitations of real experimental data, the use 
of simulated data for validating inference algorithms has 
gained much interest. Simulated data will never cover all the 
intricacies of real experimental data, but at least such data 
can be used to unveil some qualitative properties of the 
algorithm under test (e.g. noise robustness, sensitivity, 
optimality of the proposed solution) and to tune the 

                                                        
19 For SAMBA only the parameters accessible from the user interface were 

discussed. 
20 Running time for regulator support = 1 was >10h, the algorithm was 

terminated before finishing. For regulator support (Rs) = 3, only 37% of the 

modules had a similar module under the default parameter settings (Rs=2). 

However, the remaining 63% of the modules was related to a module in the 

reference set for which the set of genes was a superset of the genes in the 

module for Rs=3 and for which the set of regulators was a subset of the 

regulators of the regulators genes in the module for Rs=3. 

parameter settings to some extent. Several efforts have been 
made to generate data that mimic true experimental data. 
Simulating data implies creating realistic network topologies 
consisting of nodes and edges that represent the genetic 
entities and interactions among them. For producing 
topologies or network structures of large networks 
comprising thousands of nodes, approaches using random 
graph models or based on sampling substructures from 
previously described networks have been used [64-66]. Each 
of these models create graph structures that share at least one 
topological property with known regulatory networks, like 
scale-free [67] and small-world properties [68]. 

 Secondly, transition functions need to be defined that 
model the interactions between the nodes. Boolean [69,70], 
continuous [66,71,72], and probabilistic [66] models have 
been proposed. Most current network simulators [64,66,71-
74] use a set of ordinary differential equations (ODE's) based 
on Michaelis-Menten or Hill-like reaction kinetics [75]. 
Good generators are able to generate networks with differing 
structures and interaction types to prevent overfitting of the 
algorithms towards specific properties of the simulated data 
(e.g. exclusively linear interactions). 

CONCLUSIONS 

 Network inference has been the subject of intensive 
research during the last five years. Only recently, with the 
advent of high-throughput data other than microarrays and 
with the increasing interest in designing biologically relevant 
rather than mathematically innovative solutions, 
computational methods emerge that allow tackling realistic 
situations. The focus is increasingly shifting towards 
integrative approaches dealing with several data sources 
simultaneously and based on biologically realistic 
simplifications. However, the problem is still far from being 

Table 3. User-Definable Parameters for Module Inference Algorithms that Use Heterogeneous Data Sources 

 

Algorithm Parameters Description Default Value Robustness Boundary 

SAMBA
19

 
Overlap prior 
factor 

The desired amount of overlap between the modules 0.1 0.01 - 0.12 

GRAM 
Core profile p-
value 

Threshold on the significance value of the core set of 
genes: the core set contains only genes for which all 
the transcription factors bind with at least the given 

significance value. 

0.001 0.00090 - 0.00115 

 Module p-value 
cutoff 

The cutoff for the combined P-value for a module 0.01 0.0088 - 0.0115 

 Number in core 
cutoff 

The minimum number of genes required to extend the 
core profile into a module 

5 1 - 7 

ReMoDiscovery 
Expression 
correlation 
threshold 

The minimum correlation required between the 
expression profiles for all the genes in a seed module 

0.75 0.72 - 0.78 

 Motif/regulator 
threshold 

Motifs/regulators with a p-value above this threshold 
are considered significant 

0.99 0.989 - 0.991 (regulator threshold) 

 Motif/regulator 
support 

The minimum number of motifs/regulators required to 
identify a seed module 

2 2-2see 20 (regulator threshold) 

The table describes the properties of user-definable parameters for different module inference algorithms mentioned in the text. Remark that Xu et al. [59] was not included as the 

software was not available. Algorithm: name of the algorithm; Parameters: list of different user-definable parameters; Description: a short description of each user definable 
parameter; Default value: the parameter setting as used in the original study; Robustness boundary: the parameter range for which at least 80% of the generated modules are 

sufficiently similar to at least one of the modules generated by the default settings. Sufficiently similar in this context is defined as follows: at least 80% of the genes of both modules 

overlap and the regulatory program maximally differ in 20% of the regulators (so modules with less than 5 regulators must have the same set of regulators to be considered similar). 
Datasets used for benchmarking tested were derived from gene expression data of Gasch et al. [11] and ChIP-chip data of Harbison et al. [55] of which for both datasets only the first 

50 columns were used. Only genes without missing values for the expression- and ChIP-chip data were retained. ReMoDiscovery was used without motif data. 
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solved. The framework of most of the methods developed so 
far is rather specifically designed for the problem to be 
solved and is difficult to extend with other types of data 
sources and with data relating to aspects of the regulatory 
network other than the transcriptional aspects. Also 
relatively little effort has been put in developing methods for 
experiment design. Considering the tedious and expensive 
nature of high-throughput data, methods that predict the next 
most informative experiments based on a previous set of data 
would be very valuable to molecular biologists. Last but not 
least, benchmarking will become increasingly important to 
assess and tune these algorithms before they can be used in 
daily practice. From this perspective, the use of simulated 
data, although only roughly approximating biological reality, 
will be essential. Considering the importance of data 
integration in systems biology, there is a need for a simulator 
that produces biologically plausible, heterogeneous data sets. 
Taken together, in view of the recent breakthroughs and the 
open research challenges, network or module inference 
offers an intriguing research field and holds much promise 
for many novel and exciting discoveries in biology. 
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