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ABSTRACT
Summary: MARAN is a web-based application for
normalizing microarray data. MARAN comprises a
generic ANOVA model, an option for Loess fitting prior to
ANOVA analysis, and a module for selecting genes with
significantly changing expression.
Availability: http://www.esat.kuleuven.ac.be/maran/
Contact: kristof.engelen@esat.kuleuven.ac.be

INTRODUCTION
The use of ANOVA (ANalysis Of VAriance) for nor-
malizing microarray data is increasingly gaining interest
(Jin et al., 2001; Kerr et al., 2000). A major advantage
of this approach is that different sources of variation
are assessed at once across the entire experiment. More-
over, residuals obtained from fitting the model provide
a means for statistical analysis of the results, e.g. se-
lecting genes with significantly changing expression.
MARAN is a user-friendly web-based application for
normalizing microarray data. The normalization pro-
cedure implemented in MARAN consists of a generic
ANOVA model; it is readily applicable to any type
of experimental design. Additional functionalities are
plots for assessing the appropriateness of the model,
an option for Loess fitting (Yang et al., 2002) the data
in case of severe non-linearities in the data set, and a
module for selecting genes with significantly changing
expression.

PREPROCESSING A DATA SET
Modeling the data
Use of ANOVA for microarray normalization basically
comes down to modeling the measured expression level
of each gene as a linear combination of the major sources
of variation (i.e. explanatory variables or effects), such as
the array or dye for which the measurement was taken.
An advantage of the model implemented in MARAN is its
generic nature with respect to the experimental design, i.e.
it can be used to normalize any type of microarray design
in a single run. The major effects included in the model
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are batch, dye, array, pin and array × dye. A batch is a
collection of slides which contain the same set of genes,
representative for part of the genome. This effect needs
to be taken into account when the entire set of genes is
too large to be spotted on a single array. The collection
of arrays on which the same set of genes was spotted
constitutes a ‘batch’. The dye effect models the difference
in measured intensities between the red and green dye; the
array effect compensates for global intensity differences
between arrays. Likewise, a set of measurements that
share the same pin effect, were spotted by the same
spotting pin. The array × dye interaction effect is used,
instead of a condition effect, for alleviating any condition-
dependent variations in the measured intensities. Both
effects are confounded and using a condition effect would
render the analytical solutions of the model fit dependent
on the experimental design.

Apart from these global effects, a gene and expression
effect have been included as well. The gene effect
normalizes each gene with respect to its basal expression
level; expression refers to the effect of interest, i.e. the
condition-affected change in intensity for each gene.

Modeling the data is fairly straightforward and user-
friendly. Any explanatory variable, that is not relevant for
a specific experimental design, is automatically discarded.
All other effects (except expression) can be included or
excluded by clicking the corresponding checkboxes on the
‘Modeling’ page.

While it is technically possible to normalize any type
of experiment design with our model, we would suggest
to make sure each gene is measured at least twice in
every condition, regardless of the other parameters. The
underlying reasons are explained in detail in the ‘User
Guide’ section of the website.

Interpretation of the results
After completion of the analysis, normalized expression
values (and all parameters and residuals of the fitted
model) can be downloaded from the ‘Results’ page.
Also on this page, an ANOVA-table, for interpreting the
different effects and their contribution to the total amount
of variation, and several plots for analyzing the ANOVA
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modeling assumptions, are included. These assumptions
are 2-fold: firstly, the data should be adequately de-
scribed by a linear model. Secondly, the error terms are
assumed to be normally distributed with mean zero and
constant variance. Information about the heteroscedas-
ticity (non-constant error variance) and normality of the
residual distribution can be obtained from the ‘Global
residual plot’ and the ‘NQ plot’ respectively. Serious
heteroscedastic features should be avoided when using the
residual distribution for selecting genes with significantly
changing expression. It should be noted, however, that de-
viations from normality, in the form of widened tails, can
often be acceptable due to the small amount of data points
compared to the number of parameters to be estimated.
As explained later on, bootstrap methods are advisable
for selecting genes with significantly changing expression
when serious heteroscedasticity or non-normality occurs
in the residual distribution.

More problematic, however, is an apparent het-
eroscedasticity caused by a superposition of non-linear
trends in the residuals for each combination of major
effects, indicating that a linear model is not adequate
for describing the data (i.e. the first assumption is not
satisfied). All other plots are residual plots for each spe-
cific array–dye combination. When obvious curvilinear
trends are observed on these plots (Marchal et al., 2002),
remedial measures should be taken, as described below.

Remedial measure for non-linear residual trends
A well-established remedial measure for removing non-
linear effects in the data set has previously been described
by Yang et al. (2002). This Loess-based method has been
made available in the MARAN web application (‘Loess’
page). The ‘Loess’ page can be accessed directly or after
inspecting the results of an initial fit. It is important to
keep in mind that a Loess-fit based correction for non-
linearities is performed in the dye direction, separately for
each array. This implies that, for complex experimental
designs, non-linearities across arrays or conditions cannot
be completely alleviated.

Filtering the results
As mentioned above, the obtained estimates of the error
terms can be used for various statistical analysis concern-
ing the ANOVA parameters. Two different methods for se-
lecting genes with significantly changing expression have
been made available on the website.

The first method is valid under the assumption of
normally distributed error terms, with mean zero and
constant error variance. A selection of genes can be
obtained by entering a preferred significance or, when
desired, p-values for all genes can be downloaded.

The alternative method is based on a bootstrap pro-
cedure (Efron, 1979). It is a ‘fixed predictor sampling
method’, similar to the one described by Kerr et al. (2000)
and is appropriate when the residuals show serious devia-
tions from normality, but no apparent heteroscedasticity is
present. A selection of genes can be obtained by entering
a preferred significance.

Further analysis
The complete results file, or a selection of genes obtained
after filtering, can be used for further analysis using a
direct link to the INCLUSive website (INCLUSive is a
web-based application for integrated clustering, upstream
sequence retrieval and regulatory motif detection; Thijs et
al., 2002).
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