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Cuernavaca, México
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Thanks to the availability of high-throughput omics data, bioinformatics approaches Q1

are able to hypothesize thus-far undocumented genetic interactions. However, due to
the amount of noise in these data, inferences based on a single data source are often
unreliable. A popular approach to overcome this problem is to integrate different data
sources. In this study, we describe DISTILLER, a novel framework for data integra-
tion that simultaneously analyzes microarray and motif information to find modules
that consist of genes that are co-expressed in a subset of conditions, and their cor-
responding regulators. By applying our method on publicly available data, we evalu-
ated the condition-specific transcriptional network of Escherichia coli. DISTILLER con-
firmed 62% of 736 interactions described in RegulonDB, and 278 novel interactions were
predicted.

Key words: transcriptional modules; frequent itemset mining; DISTILLER

Introduction

The transcriptional network of E. coli is
among the best characterized networks; it has
been estimated that 25% of its interactions
have been resolved,1 and for about 70 regu-
lators the regulatory binding sites are known.2

Thanks to the availability of high-throughput
omics data, we can use computational ap-
proaches to predict novel interactions. As such,
methods that infer transcriptional interactions
from microarray only have been successfully
applied to further extend the E. coli tran-

Address for correspondence: Kathleen Marchal, Kasteelpark Arenberg
20, B-3001 Heverlee (Leuven), Belgium. Voice: +3-216-329-685; fax: +3-
216-321-966. kathleen.marchal@biw.kuleuven.be

scriptional network.3 However, high noise lev-
els often make predictions from single data
sources unreliable. It is well known that data
integration may alleviate this problem, by ex-
ploiting complementarities in different data
sources.

In this study we describe DISTILLER (Data
Integration System To Identify Links in Ex-
pression Regulation), a data integration frame-
work that simultaneously analyzes microarray
and motif information to find modules of genes
that are co-expressed in a subset of conditions,
together with their corresponding regulators.
We applied DISTILLER to a cross-platform
array compendium and motif data to further
complete the RegulonDB network and to study
its condition dependency.

Ann. N.Y. Acad. Sci. xxxx: 1–7 (2008). C© 2008 New York Academy of Sciences.
doi: 10.1196/annals.1465.000 1
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Results and Discussion

Distiller

The method introduced in this paper builds
upon a previous regulatory module detection
tool,4,5 but has been significantly redesigned
to increase scalability and reduce the num-
ber of parameters required. More importantly,
DISTILLER includes a condition selection
strategy: co-expression of genes is required
in only a significant subset of the complete
condition set (bicluster strategy). By includ-
ing this condition selection we can apply the
algorithm to large heterogeneous expression
compendia.

Our methodology consists of three steps: 1)
the identification of seed modules; 2) the reduc-
tion of the set of all seed modules to a manage-
able set of nonredundant (small overlap) and
significant (association in the data cannot be
explained by chance) seed modules; and 3) the
extension of the seed modules thus obtained
with additional genes.

Although our approach can be extended to
any number of input matrices or data sources,
we used two input matrices to generate the re-
sults in this paper:

• An expression data compendium A (see
Materials and Methods) with dimensions
N G × N C , where NG indicates the total
number of genes in the compendium and
NC the total number of conditions.

• A binary regulatory motif matrix R (in-
put interaction matrix) with dimensions
N G × N R , where NR is the total num-
ber of regulators for which motif data is
available. Each element rip of this matrix
indicates whether the upstream region of a
specific gene i contains a statistically signif-
icant motif instance of the known regula-
tory motif model of that specific regulator
p.

Seed Modules

Let g(m) be the set of gene indices that corre-
spond to genes in module m. DISTILLER ini-

tially identifies seed modules that satisfy three
constraints:

(CG ) The module should contain a minimum num-
ber G of genes (that is, a gene content threshold),
or |g(m)| ≥ G .

(CR) All genes g(m) in the module should contain
motif instances for a sufficient number R of com-
mon, a priori, unspecified regulators. Let 1 repre-
sent an all-ones vector of appropriate dimensions.
Then, this constraint can be formulated mathe-
matically as |{p |1TRg(m),p = g(m)|}| ≥ R .

(CC ) All genes g(m) in the module should be sig-
nificantly co-expressed in a sufficiently large, a
priori unspecified set of experimental conditions.
We indicate this required number of conditions by
C . In order to calculate the maximal valid con-
dition set c(m) given a certain gene set g(m), we
first compute the difference between the largest
and smallest expression levels in the gene set
for each of the conditions: B WJ = max(Ag (m ),j ) −
min(Ag (m ),j ). We call BWj the bandwidth for con-
dition j. Subsequently, these bandwidths are sorted
in increasing order to obtain a sorted bandwidth
sequence B W

(s )
j that satisfies B W

(s )
j −1 ≤ B W

(s )
j ≤

B W
(s )
j +1 (see Fig. 1A). The sequence B W

(s )
j is then

compared with a prespecified threshold band-
width sequence B W

(t h )
j that is sorted as well:

B W
(t h )
j −1 ≤ B W

(t h )
j ≤ B W

(t h )
j +1. Gene set g(m) is said

to be co-expressed in Cmax conditions if the sorted
bandwidth sequence B W

(s )
j is completely within the

threshold bandwidth sequence B W
(t h )
j for 1 ≤ j ≤

Cmax, that is, if B W
(s )
j ≤ B W

(t h )
j for 1 ≤ j ≤ Cmax.

Constraint CC is satisfied if this property holds for
Cmax ≥ C .

A naive exhaustive search for valid modules
as defined above would require checking all
possible combinations of genes, motif instances,
and experimental conditions. This is unfeasi-
ble for data sets of any reasonable size. Itemset
mining algorithms are well suited to solve this
problem. In our previous work we therefore
have adopted a breadth-first strategy that re-
sembles the Apriori algorithm.4,5 In the current Q2

work we use a depth-first search more similar
to CHARM.6 The depth-first strategy guar- Q3

antees a better scalability, especially on non-
sparse data sets (such as the expression com-
pendium, which was necessary to obtain the
results in the current paper). Even though the
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Figure 1. (A) Definition of the bandwidth and its

Q4

use for condition selection The top half shows hypo-
thetical expression profiles for three different genes.
For each of the four conditions, the bandwidth for this
set of genes is indicated with a vertical bidirectional
arrow. The lower half shows the bandwidth sequence
for these expression data, obtained by sorting the
bandwidths in increasing order. Two threshold band-
width sequences (BW(th,1) and BW(th,2)) are shown
as well (bold lines). If we were to use BW(th,1), this
set of three genes would qualify as a module for
the expression data, since the bandwidth sequences
lie entirely below BW(th,1). However, if we were us-
ing BW(th,2), this set of genes would not qualify as
a module. (B) Selection of the bandwidth threshold
based on random data. To illustrate how a thresh-
old bandwidth sequence is obtained from the data,
we show five bandwidth sequences corresponding to
randomly sampled sets of genes. The dashed line is a
candidate threshold bandwidth sequence, obtained
by connecting all second smallest values for all four
sorted conditions. The threshold bandwidth sequence
that is actually used is the one that qualifies a fixed
fraction of randomly sampled gene sets as a module
(box P-value).

exploration of all gene sets has become feasi-
ble in this way, the number of modules may
still be impractically large. DISTILLER solves
this problem by reporting only closed modules.
These are modules that cannot be further ex-
tended by any other gene without reducing the
number of motifs that all of its genes share, or
the number of conditions in which its genes
are expressed similarly. DISTILLER applies
techniques used in CHARM to efficiently ig-
nore nonclosed modules while selecting all the
closed ones. We report only closed modules
with a number of genes larger than or equal
to a threshold G (the “gene content threshold”)
because only those modules containing a min-
imum number of genes are interesting.

Selecting Interesting Nonredundant
Modules

Despite the massive reduction in the num-
ber of modules achieved by using CHARM,
the output may still be too large to explore:
small amounts of noise in the data may cause
one module to appear as a large number of
separate partially overlapping modules, all very
similar in gene, regulator, and condition con-
tent. To address this problem we apply an iter-
ative procedure that selects the most interesting
modules one by one. It takes into account the
significance of individual modules but at the
same time penalizes overlap with modules that
have already been reported.

Seed Module Extension

In a subsequent extension step, we recruit
additional candidate module genes that did not
pass the stringent seed discovery step but should
be considered part of the module, such as down-
stream operon genes that do not contain a mo-
tif instance in their promoter regions but are
subject to its regulatory influence. The relaxed
criteria for adding additional genes to the mod-
ule are the following: 1) the gene’s expression
profile should have a correlation with the mod-
ule’s mean expression profile of at least a frac-
tion α of the module correlation, defined as the
lowest correlation value between a seed gene’s
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expression profile and the average expression
profile for the modules conditions, and 2) the
genes should have a motif instance with P-value
below a threshold β. Both requirements have to
be fulfilled unless a gene is part of an operon
for which the first gene is present in the seed
module. In this case only the first criteriom has
to be satisfied.

Condition-Dependent Regulator-Target
Interactions

We used our data integration framework, to
infer the condition-dependence of modules in
E. coli and their degree of combinatorial reg-
ulation. The input data consisted of an E. coli

microarray compendium and information on
the interaction between a regulator and its tar-
gets (see Materials and Methods). The microar-
ray compendium is, to our knowledge the first
cross-platform compendium combining 870
arrays, from 70 experiments, performed on four
different platforms.

Identifying Regulatory Modules
and Regulator-Target Interactions

Motif data were integrated with our ex-
pression compendium to generate condition-
dependent modules. The 150 statistically most
significant modules recovered by DISTILLER
represent 454 interactions corresponding to
62% of 736 interactions for 67 regulators with
known binding sites described in RegulonDB.2

Most modules are enriched for functions in
which the regulator was known to be involved.
For 37 of the 67 regulators at least part of their
regulon could be confirmed. For the remaining
30 regulators no interaction was found; most
likely either the number of genes in the corre-
sponding modules fell below the gene content
threshold, or the conditions needed to trig-
ger these interactions are not present in our
compendium.

In addition to identifying 454 previously
described interactions, we predict 278 novel
interactions that have not previously been de-
scribed in RegulonDB. Supplementary file 1

gives an overview of the number of known in-
teractions that were identified per regulator, as
well as the number of new, predicted interac-
tions. It shows how for many well-studied regu-
lators the known part of the regulon could still
be extended considerably. The large number
of predictions for FNR, CRP, ArcA, Fis, and
IHF confirms their role as global hubs in the Q5

network. For some regulators only the previ-
ously described interactions, and/or a few ad-
ditional ones could be retrieved (for example,
CueR, GlpR). Because we found these regula- Q6

tors active in conditions of the compendium but
could not extend these regulons any further, we
postulate that these regulators are nearly com-
pletely characterized and indeed target only
a few genes (operons) triggering very specific
pathways. As for most of the newly predicted
interactions (hypothetical genes), no additional
confirmation existed in literature, we assigned
them a level of confidence based on the gene
composition of the module in which the tar-
get was retrieved. If the module contained
many previously confirmed targets, tightly co-
expressed with the novel target, we can be more
confident in its prediction.

Conditional Dependency
of the Regulatory Network

When working with expression compendia
containing many heterogeneous conditions, it
can be expected that coregulated genes are no
longer co-expressed over all conditions but only
in a subset of conditions. To be able to ex-
ploit the continuously growing number of pub-
licly available microarrays, DISTILLER uses
a bicluster strategy that not only identifies sets
of genes that are co-expressed but also selects
the conditions under which these genes are co-
expressed.

Figure 2 shows an example of two mod-
ules that were inferred by DISTILLER. The
genes in both modules are regulated by the
two-component regulatory ArcAB system. Ar- Q7

cAB functions as a major control system for the
regulation of expression of genes encoding en-
zymes involved in both aerobic and anaerobic
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Figure 2. Two ArcA modules that were identified by DISTILLER. The first module consists of four genes:
three known ArcA targets and one putative target (narP). The known genes are all activated by ArcA in
anaerobic conditions. The second module consists of genes involved in aerobic metabolism. These genes
are repressed by ArcA in an anaerobic environment. The expression behavior illustrates that, although
the genes in both modules are all under the control of ArcA, they are regulated differently. This is also
evident from the opposite expression behavior that can be observed in the common conditions between the
modules.

catabolic pathways. The first module contains
three known targets of ArcA (cydA, moeA, focA)Q8

that are activated by ArcA under anaerobic
conditions. The fourth gene of the module
is a putative ArcA target that encodes for a
regulator NarP. NarP is responsible for theQ9

up-regulation of genes involved in the NO3-
respiration, a process known to take place in
the absence of oxygen. The second module
contains 11 ArcA targets, including one pu-
tative target (ompY ). The previously confirmedQ10

targets of ArcAB in this module are involved in
aerobic metabolism and are repressed by Ar-
cAB in anaerobic conditions. Figure 2 clearly
shows that the genes of both modules are co-
expressed in different subsets of conditions. The
modules also have a limited number of condi-
tions in common. In these conditions, the genes
involved in aerobic metabolism (first module)
show an expression behavior (regulation) that

is opposite to the anaerobic targets of ArcAB
(second module).

Perspectives and Future Work

DISTILLER combines bicluster functional-
ity with data integration functionality. Since bi-
clustering is a combinatorial and hence compu-
tationally hard problem, we exploit advanced
itemset mining algorithms. With the growing
number of publicly available microarray data,
further reduction in computational complexity
may be achieved by imposing additional con-
straints, for instance by grouping time series
conditions.

Although the current work combines mi-
croarray and motif data only, our framework
makes it straightforward to include any number
of additional data sources related to transcrip-
tional interactions, including ChIP-chip data. Q11

Novel state-of-the-art data sources such as deep
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sequencing data are of particular interest, as
they may obtainmore information on the pres-Q12

ence and amount of mRNA in a particular ex-
perimental condition, and hence a more de-
tailed view on the transcriptional network.

Materials and Methods

Microarray Compendium

Our cross-platform compendium contains a
large collection of publicly available microar-
rays. The data were collected from the three
major microarray databases: Stanford Mi-
croarray Database (SMD),7 Gene Expression
Omnibus (GEO),8 and ArrayExpress (AE).9

Additionally, we added four microarray exper-
iments described in the literature that were
available as supplementary information. Af-
ter removing redundant information in the
microarray databases, we obtained a total of
870 microarrays.

Input Interaction Data

The input interaction data were based on
both experimentally verified and predicted reg-
ulatory binding sites. Known binding sites in
the motif matrix were derived from Regu-
lonDB. Whenever a motif instance in the pro-
moter region of a gene was experimentally
confirmed according to RegulonDB, its cor-
responding regulator-target interaction was set
to “1” in the motif matrix.

To predict novel binding site instances, mo-
tif weight matrices corresponding to the bind-
ing sites of 67 regulators were downloaded
from the RegulonDB website (version 5.6). Up-
stream regions of all annotated Escherichia coli

K12 (NC_000913) genes were screened with
these motif models. For motif screening and
P-value calculations for the identified motif in-
stances, we used the method of Hertzberg.10

The P-values were used to construct the “motif
matrix”, a binary matrix that assigns a mo-
tif instance to a gene whenever the gene’s up-
stream sequence contains at least one instance

of the motif, with a P-value below a threshold
of 0.001.

Benchmarking with RegulonDB
and Novel Interactions

For genes organized into operons, usually
only the promoter region of the first operon
gene contains a motif instance. Because in Reg-
ulonDB the direct interaction between a reg-
ulator and a target gene is derived from the
presence of an experimentally verified motif
instance, only the interaction between a reg-
ulator and the first operon gene is reported.
RegulonDB contains information on 736 such
interactions.2 Therefore, when comparing the
interactions inferred by DISTILLER with the
known direct interactions in RegulonDB, we
only consider those genes that have the motif
instance in their promoter region. We consider
all direct interactions inferred by DISTILLER
that are not direct interactions in RegulonDB
as novel interactions. Some of these interactions
might have been reported in recent literature
not yet covered by RegulonDB.

Running Parameters

We choose our parameter settings such that
the seed module consists of at least four genes
(the gene content threshold) that share at least
one motif and 50 conditions. The threshold for
the P-value of the motif instances was set to
0.001. In order to choose the box threshold,
100,000 randomizations were carried out and
the box P-value threshold was set to 0.0001. In
the post-processing steps, a subset of 150 mini-
mally redundant modules was selected, and the
threshold for the coefficient of variation was set
to 0.6. For the seed module extension step, cor-
relation parameter α was set to 90% and the
relaxed P-value threshold β to 0.05.
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