
1Funtional bioinformatis of miroarray data:from expression to regulationYves Moreau, Frank De Smet, Gert Thijs, Kathleen Marhal, and Bart De MoorDepartment of Eletrial Engineering, Katholieke Universiteit LeuvenKasteelpark Arenberg 10, B-3001 Leuven, BelgiumAbstrat�Miroarrays are a powerful tehnique to mon-itor the expression of thousands of genes in a single ex-periment. From series of suh experiments, it is possi-ble identify the mehanisms that govern the ativation ofgenes in an organism. Short DNA patterns (alled bindingsites) in or around the genes serve as swithes that on-trol gene expression. As a result similar patterns of ex-pression an orrespond to similar binding site patterns.We integrate lustering of oexpressed genes with the dis-overy of binding motifs. We overview several impor-tant lustering tehniques and present a lustering algo-rithm (alled adaptive quality-based lustering), whih wehave developed to address several shortomings of exist-ing methods. We overview the di�erent tehniques formotif �nding, in partiular the tehnique of Gibbs sam-pling, and we present several extension of this tehniquein our Motif Sampler. Finally, we present an integratedweb tool alled INCLUSive (http://www.esat.kuleuven.a.be/~dna/BioI/Software.html) that allows the easy analysis of mi-roarray data for motif �nding.I. IntrodutionUnraveling the mehanisms that regulate gene ativa-tion in an organism is a major goal of moleular biology.In the past few years, miroarray tehnology has emergedas an e�etive tehnique to measure the level of expressionof thousands of genes in a single experiment. Beause oftheir apaity to monitor many genes, miroarrays are be-oming the workhorse of moleular biologists studying generegulation. However, these experiments generate data insuh amount and of suh a omplexity that their analysisrequires powerful omputational and statistial tehniques.As a result, unraveling gene regulation from miroarray ex-periments is urrently one of the major hallenges of bioin-formatis.Starting from miroarray data, a �rst major omputa-tional task is to luster genes into biologially meaningfulgroups aording to their pattern of expression [25℄. Suhgroups of related genes are muh more tratable for studyby biologists than the full data itself. Classial lusteringtehniques suh as hierarhial lustering [14℄ or K-means[55℄ have been applied to miroarray data. Yet the spei-�ity of miroarray data (suh as the high level of noise orthe link to extensive biologial information) have reatedthe need for lustering methods spei�ally tailored to thistype of data [19℄. We overview both the �rst generationof lustering methods applied to miroarray data as wellas seond generation algorithms, whih are more spei�to miroarray data. In partiular, we address a numberof shortomings of lassial lustering algorithms with anew method alled adaptive quality-based lustering [10℄

in whih we look for tight reliable lusters.In a seond step, we ask what makes genes belong to thesame luster. A main ause of oexpression of genes is thatthese genes share the same regulation mehanism at thesequene level. Spei�ally, some ontrol regions (alledthe promoter region) in or around the genes will ontainspei� short sequene patterns, alled binding sites, whihare reognized by ativating or repressing proteins, alledtransription fators. In suh a situation, we say that thegenes are transriptionally regulated. Swithing our at-tention from expression data to sequene data, we on-sider algorithms that disover suh binding sites in setsof DNA sequenes from oexpressed genes. We analyzethe upstream region of those genes to detet patterns, alsoalled motifs, that are statistially overrepresented whenompared to some random model of the sequene. The de-tetion of overrepresented patterns in DNA or amino-aidsequenes is alled motif �nding ; here we address only theproblem of motif �nding in DNA sequenes (as opposed tomotif �nding in protein sequenes). Two lasses of methodsare available for motif �nding: word-ounting methods andprobabilisti sequene models. Word-ounting methods arestring-mathing methods based on ounting the numberof ourrenes of eah DNA word (alled oligonuleotide)and omparing this number with the expeted number ofourrenes based on some statistial model. Probabilis-ti sequene models build a likelihood funtion for the se-quenes based on the motif ourrenes and a model of thebakground sequene. Probabilisti optimization methods,suh as Expetation Maximization and Gibbs sampling, arethen used to searh for the best on�gurations (motif modeland positions). After brie�y presenting the word-ountingmethods and the method based on Expetation Maximiza-tion, we disuss the basi priniples of Gibbs sampling formotif �nding more thoroughly. We also present our Gibbssampling method, alled the Motif Sampler, where we haveintrodued a number of extensions to improve Gibbs sam-pling for motif �nding, suh as the use of a more preisemodel of the sequene bakground based on higher-orderMarkov hains. This improved model inreases the robust-ness of the method signi�antly.These two steps, lustering and motif �nding, are inter-loked and spei�ally dediated to the disovery of reg-ulatory motifs from miroarray experiments. In partiu-lar, lustering needs to take into aount that motif �nd-ing is sensitive to noise. Therefore, we need lusteringmethods that build onservative lusters for whih oex-



2pression an be guaranteed in an attempt to inrease theproportion of oregulated genes in a luster. This is oneof the requirements that warranted the development of ouradaptive quality-based lustering algorithm. Also the motif�nding algorithms are spei�ally tailored to the disoveryof transription fator binding motifs (while related algo-rithms an be developed for slightly di�erent problems inprotein sequene analysis). These tight links mandate ourintegrated presentation of these two topis in this paper.Furthermore, the same links all for integrated softwaretools to handle this task in an e�ient manner. Our IN-CLUSive web tool (http://www.esat.kuleuven.a.be/~dna/BioI/Software.html) supports motif �nding frommiroarray data. Starting with the lustering of miroarraydata by adaptive quality-based lustering, it then retrievesthe DNA sequenes relating to the genes in a luster in asemi-automated fashion, and �nally performs motif �nd-ing using our Motif Sampler (see Figure 1). Integration isparamount in bioinformatis as, by optimally mathing thedi�erent steps of the data analysis to eah other, the totalanalysis beomes more e�etive than the sum of its parts.This paper is organized as follows. In Setion II, webrie�y desribed miroarray tehnology while in Setion IIIwe summarize the basi onepts of moleular biology rel-evant to motif �nding. In Setion IV, we overview urrentlustering algorithms for miroarray data, in partiular ouradaptive quality-based lustering algorithm. We also dis-uss methods to preproess the miroarray data to makeit suitable for lustering and methods to assess the qualityof lustering results from statistial and biologial stand-points. Next, we desribe in Setion V the problem ofmotif �nding and overview several of the methods avail-able for this problem. We then explore, in Setion VI, thebasi priniples of Gibbs sampling for motif �nding anddesribe the extensions neessary for its e�ient pratialappliation. In Setion VII, we desribe our INCLUSiveweb tool for the integration of adaptive quality-based lus-tering and Gibbs sampling for motif �nding. Finally, wesummarize our presentation and brie�y onlude. Our pre-sentation does not aim at being exhaustive or at presentingall methods in full tehnial details, but rather at giving aomprehensive and oherent view of the omplex problemof motif �nding from miroarray data.II. Measuring gene expression profilesCells produe the proteins they need to funtion prop-erly by (1) transribing the orresponding genes from DNAinto messenger RNA (mRNA) transripts and (2) translat-ing the mRNA moleules into proteins. Miroarrays obtaina snapshot of the ativity of a ell by deriving a measure-ment from the number of opies of eah type of mRNAmoleule (whih also gives an indiret and imperfet pi-ture of the protein ativity). The key to this measurementis the double-helix hybridization properties of DNA (andRNA). When a single strand of DNA is brought in on-tat with a omplementary DNA sequene, it will annealto this omplementary sequene to form double-strandedDNA. For the four DNA bases, Adenine is omplementary

to Cytosine and Guanine is omplementary to Thymineand the omplementary sequene is produed by omple-menting the bases of the referene sequene starting fromthe end of this sequene and proeeding further upstream.Hybridization will therefore allow a DNA probe to reog-nize a opy of its omplementary sequene obtained froma biologial sample.An array onsists of a reproduible pattern of di�er-ent DNA probes attahed to a solid support. After RNAextration from a biologial sample, �uoresently labeledomplementary DNA (DNA) or RNA is prepared. This�uoresent sample is then hybridized to the DNA presenton the array. Thanks to the �uoresene, hybridization in-tensities (whih are related to the number of opies of eahRNA speies present in the sample) an be measured bya laser sanner and onverted to a quantitative readout.In this way, miroarrays allow simultaneous measurementof expression levels of thousands of genes in a single hy-bridization assay. This data an be further analyzed bydata-mining tehniques as explained in the next setions.Two basi array tehnologies are urrently available:DNA miroarrays and gene hips. DNA miroarrays [12℄are small glass slides on whih double-stranded DNA isspotted. These DNA fragments are normally several hun-dred base pairs in length and are often derived from refer-ene olletions of expressed sequene tags (whih are sub-sequenes from an mRNA transript that uniquely identifythis transript) extrated from many soures of biologialmaterials so as to represent the largest possible number ofgenes. Usually eah spot represents a single gene. DNAmiroarrays use two samples: a referene and a test sam-ple (e.g., normal versus malignant tissue). A pair of DNAsamples is independently opied from the orrespondingmRNA populations with the reverse transriptase enzymeand labeled using distint �uoresent moleules (green andred). These labeled DNA samples are then pooled andhybridized to the array. Relative amounts of a partiu-lar gene transript in the two samples are determined bymeasuring the signal intensities deteted at both �uores-ene wavelengths and alulating the ratios (here, onlyrelative expression levels are obtained). A DNA miroar-ray is therefore a di�erential tehnique, whih intrinsiallynormalizes for part of the experimental noise. An overviewof the proedure that an be followed with DNA miroar-rays is given in Figure 2.GeneChip oligonuleotide arrays (A�ymetrix, In., SantaClara, CA) [32℄ are high-density arrays of oligonuleotidessynthesized using a photolithograpi tehnology similar tomirohip tehnology. The synthesis uses in situ light-direted hemistry to build up hundreds of thousands of dif-ferent oligonuleotide probes (25-mers). Eah gene is repre-sented by 15-20 di�erent oligonuleotides, serving as uniquesequene-spei� detetors. In addition mismath ontrololigonuleotides (idential to the perfet math probes ex-ept for a single base-pair mismath) are added. Theseontrol probes allow estimation of ross-hybridization andsigni�antly derease the number of false positives. Withthis tehnology, absolute expression levels are obtained (no



3

Fig. 1. A high-level desription of data analysis for motif �nding from miroarray data. The analysis starts from sanned miroarray images.After proper quanti�ation and preproessing, the data is available for lustering in the form of a data matrix. Clustering then determineslusters of potentially oregulated genes. Fousing on a luster of genes of interest, motif �nding analyzes the sequenes of the ontrol regionsof the genes in the luster. A number of true motifs are present in those sequenes but they are unknown. Motif �nding analyzes thosesequenes for statistially overrepresented DNA patterns. Finally, andidate motifs are returned by the motif �nding algorithm and areavailable for further biologial evaluation.ratios).Both tehniques have their own advantages. GeneChiptehnology laims to be more sensitive and allows absolutemeasurements. This is mainly beause, for eah gene, moreprobes are present on the array (inluding the mismathprobes). DNA miroarray tehnology is more �exible asusers an produe ustomized array designs without de-pending on an external vendor. Further, new variants ofthese tehnologies are appearing at a regular pae and thetehnology an be expeted to evolve signi�antly in theoming years.III. Introdution to transriptional regulationIn this setion, we present onisely the main oneptsfrom biology relevant to our disussion of motif �nding inDNA sequenes.

A. Struture of genesGenes are segments of DNA that enode for pro-teins through the intermediate ation of messenger RNA(mRNA). A gene and the genomi region surrounding itonsists of a transribed sequene, whih is onverted intoan mRNA transript, and of various untransribed se-quenes. The mRNA onsists of a oding sequene that istranslated into a protein and of several untranslated regions(UTRs). The untransribed sequenes and the UTRs playa major role in the regulation of expression. Notably, thepromoter region in front of the transribed sequene on-tains the binding sites for the transription fator proteinsthat start up transription. Moreover, the region upstreamof the transription start ontains many binding sites fortransription fators that at as enhaners and repressorsof gene expression (although some transription fators an
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Fig. 2. Shemati overview of an experiment with a DNA miroarray. (1) Spotting of the presynthesized DNA-probes (derived from thegenes to be studied) on the glass slide. These probes are the puri�ed produts from PCR-ampli�ation of the assoiated DNA-lones. (2)Labeling (via reverse transriptase) of the total mRNA of the test sample (red hannel ) and referene sample (green hannel �). (3)Pooling of the two samples and hybridization (4) Readout of the red and green intensities separately (measure for the hybridization by thetest and referene sample) in eah probe. (5) Calulation of the relative expression levels (intensity in the red hannel / intensity in the greenhannel). (6) Storage of results in a database. (7) Data mining.bind outside this region).B. TransriptionTransription means the assembly of ribonuleotides intoa single strand of mRNA (messenger RNA). The sequeneof this strand of mRNA is ditated by the order of thenuleotides in the transribed part of the gene. The tran-sription proess is initiated by the binding of several tran-sription fators to regulatory sites in the DNA, usuallyloated in the promoter region of the gene. The transrip-tion fator proteins bind eah other to form a omplex thatassoiates with an enzyme alled RNA polymerase. Thisassoiation enables the binding of RNA polymerase to aspei� site in the promoter. In Figure 3, the initiation ofthe transription proess is shown.Together, the omplex of transription fators and theRNA polymerase unravel the DNA and separate bothstrands. Subsequently, the polymerase proeeds down onone strand while it builds up a strand of mRNA omple-mentary to the DNA, until it reahes the terminator se-quene. In this way, an mRNA is produed that is om-plementary to the transribed part of the gene. Then, themRNA transript detahes from the RNA polymerase andthe polymerase breaks its ontat with the DNA. In a laterstage, the mRNA is proessed, transported out of the nu-leus and translated into a protein.
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Fig. 3. Initiation of the transription proess by the assoiation ofthe omplex of transription fators (gene regulatory proteins), theRNA-polymerase, and the promoter region of a geneC. Transription fatorsTransription fators are proteins that bind to regula-tory sequenes on eukaryoti hromosomes thereby modi-fying the rate of transription of a gene. Some transrip-tion fators bind diretly to spei� sequenes in the DNA(promoters, enhaners, and repressors), others bind to eahother. Most of them bind both to the DNA as well as toother transription fators. It should be noted that thetransription rate an be positively or negatively a�eted



5by the ations of transription fators. When the tran-sription fator signi�antly dereases the transription ofa gene, it is alled a repressor. If, on the other hand, theexpression of a gene is upregulated, biologists speak of anenhaner.The protein struture of a transription fator an be di-vided into several domains, suh as a DNA-binding domain,a transription ativation domain. The DNA-binding do-main determines the target genes of the transription fa-tor. This domain determines the binding spei�ity to aertain DNA motif. The transription ativation domainis required for binding to the polymerase and atually start-ing the transription proess. Transription ativation do-mains presumably funtion by diret interation with ele-ments of the transription initiation omplex (e.g., TFIID)or by interation with intermediary proteins that in turnreognize the initiation omplex [56℄.D. Regulatory elements on the webRegulatory elements play a entral role in the study ofbiologial sequenes and many databases are available toexplore known regulatory elements. Table I give a list ofdatabase of promoters and gene regulation that are aes-sible online. Most of these sites are also portals to spei�tools for the analysis of regulatory mehanisms.TABLE IDatabases on transriptional regulationDatabase URLEPD www.epd.isb-sib.h/TRANSFAC www.gene-regulation.de/PlantCARE sphinx.rug.a.be:8080/PlantCAREPLACE www.dna.affr.go.jp/htdos/PLACETRRD www.bionet.ns.ru/SCPD gsigma.shl.org/jian/HPD zlab.bu.edu/~mfrith/HPD.htmlCOMPEL ompel.bionet.ns.ru/ompel/IV. Clustering of gene expression profilesUsing miroarrays, we an measure the expression levelsof thousands of genes simultaneously. These expression lev-els an be determined for samples taken at di�erent timepoints during a ertain biologial proess (e.g., di�erentphases of the yle of ell division) or for samples takenunder di�erent onditions (e.g., ells originating from tu-mor samples with a di�erent histopathologial diagnosis).For eah gene, the arrangement of these measurements intoa (row) vetor leads to what is generally alled an expres-sion pro�le. These expression pro�les or vetors an beregarded as data points in a high-dimensional spae.Beause relatedness in biologial funtion often impliessimilarity in expression behavior (and vie versa) and be-ause several genes might be involved in the proess understudy, it will be possible to identify subgroups or lusters ofgenes that will have similar expression pro�les (i.e., aord-ing to a ertain distane funtion, the assoiated expres-

Fig. 4. Visualization of 375 (simulated) gene expression pro�les(eah expression pro�le ontains two expression levels measured intwo di�erent samples�data not standardized). It is lear that, inthis ase, luster analysis will result in the identi�ation of threewell-separated lusters (representing three lasses of genes, possiblyassoiated with spei� biologial pathways).sion vetors are su�iently `lose' to one another). Geneswith similar expression pro�les are said to be oexpressed.Conversely, oexpression of genes an thus be an impor-tant observation to infer the biologial role of these genes.For example, oexpression of a gene of unknown biologialfuntion with a luster ontaining genes with known (orpartially known) funtion an give an indiation of the roleof the unknown gene. Also, oexpressed genes are morelikely to be oregulated, see Setion V.Cluster analysis in a olletion of gene expression pro-�les aims at identifying subgroups (= lusters) of suh o-expressed genes whih thus have a higher probability ofpartiipating in the same pathway. In pattern reogni-tion lustering is also alled unsupervised learning sinethese methods are designed to detet unknown lasses inthe data (this is in ontrast with supervised learning wherethe lasses are known in advane). An idealized examplein two dimensions is shown in Figure 4.Note that luster analysis of expression data is only a�rst rudimentary step preeding further analysis whih in-ludes motif �nding [53℄, [44℄, [59℄, funtional annotation,geneti network inferene, and lass disovery in the mi-roarray experiments or samples themselves [5℄, [19℄. More-over, lustering often is an interative proess where thebiologist or medial dotor has to validate or further re�nethe results and ombine the lusters with prior biologialor medial knowledge. Full automation of the lusteringproess is here still far away.The �rst generation of luster algorithms (e.g., diretvisual inspetion [9℄, K-means [55℄, Self-Organizing Maps(SOMs) [48℄, hierarhial lustering [14℄) used to lustergene expression pro�les were developed for purposes otherthan biologially related researh. Although it is possibleto obtain biologially meaningful results with these algo-rithms, some of their harateristis often ompliate theiruse for lustering expression data (these methods lak �ne-



6tuning for biologial problems) [46℄. They require, for ex-ample, the prede�nition of one or more user-de�ned pa-rameters that are hard to estimate by a biologist (e.g., theprede�nition of the number of lusters in K-means andSOM�this number is almost impossible to predit in ad-vane). Moreover, hanging these parameter settings willoften have a profound impat on the �nal result. Thesemethods therefore need extensive parameter �ne-tuning,whih means that a omparison of the results with di�er-ent parameter settings is almost always neessary�withthe additional di�ulty that omparing the quality of thedi�erent lustering results is hard. Another problem is thatforing every data point into a luster is another problemoften ourring with the �rst generation of lustering algo-rithms. In general, a onsiderable number of genes inludedin the miroarray experiment do not ontribute to the bi-ologial proess studied and these genes will therefore lakoexpression with other genes (they will have seeminglyonstant or even random expression pro�les). Inludingthese genes into one of the lusters will ontaminate theirontent (these genes represent noise) and make these lus-ters less suitable for further analysis. Finally, the omputa-tional and memory omplexity of some of these algorithmsoften limit the number of expression pro�les that an beanalyzed at one. Considering the nature of our data sets(number of expression pro�les often running up into thou-sands), this onstraint is often unaeptable.Reently, many new lustering algorithms have startedto takle some of the limitations of earlier methods (e.g.,Self-Organizing Tree Algorithm or SOTA [20℄, quality-based lustering [23℄, adaptive quality-based lustering[10℄, model-based lustering [17℄, [63℄, simulated annealing[37℄, gene shaving [19℄, CAST [4℄). Also, some proedureswere developed that ould help the biologist to estimatesome of the arbitrary parameters needed for the �rst gener-ation of algorithms (suh as the number of lusters presentin the data [17℄, [37℄, [63℄). We will disuss a seletion ofthese lustering algorithms in the following setions. Notethat many of these methods an be used with di�erent dis-tane measures, whih an also have serious impliationsfor the �nal result.An important problem that arises when performing lus-ter analysis of gene expression pro�les is the preproessingof the data. Clustering implies more than just submittingthe raw miroarray data to the luster algorithm of hoie.A orret preproessing strategy is almost as important asthe luster analysis itself. Firstly, it is neessary to nor-malize the hybridization intensities within a single arrayexperiment. In a two-hannel DNA miroarray experi-ment for example, normalization adjusts for di�erenes inlabeling, detetion e�ieny, and in the quantity of initialRNA within the two hannels [25℄. Normalization is nees-sary before one an ompare the results from di�erent mi-roarray experiments. Seondly, transformation of the datausing a nonlinear funtion (often the logarithm is used,espeially for two-hannel DNA miroarray experimentswhere the values are expression ratios) an be useful [25℄.Thirdly, expression data often ontains numerous missing

values and many lustering algorithms are unable to dealwith them [57℄. It is therefore imperative either to use ap-propriate proedures that an estimate and replae thesemissing values or to adapt existing lustering algorithms,enabling them to handle missing values diretly (withoutatually replaing them [10℄, [26℄). Fourthly, it is ommonto (rudely) �lter the gene expression pro�les (removingthe pro�les that do not satisfy a simple riterion) beforeproeeding with the atual lustering [14℄. A �fth and �-nal ustomarily used preproessing step is standardizationor resaling of the gene expression pro�les (e.g., multiply-ing every expression vetor with a sale fator so that theirlengths are one [25℄). This makes sense beause the aimis to luster gene expression pro�les with the same relativebehavior (expression levels go up and down at the sametime) and not only the ones with the same absolute behav-ior. Some of these preproessing steps will be disussed inmore detail in the following setions.Validation is another key issue when lustering gene ex-pression pro�les. When using existing algorithms or devel-oping new ones it is not merely enough to submit the datato the algorithm and wait for the results. Cluster analysisis more than just produing lusters. The biologist usingthe algorithm is of ourse mainly interested in the biologi-al relevane of these lusters and wants to use the resultsto disover new biologial phenomena. This means thatwe need methods to (biologially and statistially) validateand objetively ompare the results produed by new andexisting lustering algorithms. Some standard methods fordoing luster validation have reently emerged (Figure ofmerit [63℄, (adjusted) Rand index [65℄, and looking for en-rihment of funtional ategories [50℄) and will be disussedbelow. Note that one of the reasons that there are so manydi�erent lustering methods (sometimes giving very di�er-ent results) is that, from a biologial point of view, multi-ple and equally valid solutions are possible and that thesedi�erent algorithms often expose di�erent aspets presentwithin the data. Note also that no real benhmark data setexists to unambiguously validate novel algorithms (howeverthe results produed by Cho et al. [9℄ on the ell yle ofyeast are often used for this purpose).A. Clustering algorithmsAs stated in the introdution, many lustering methods(�rst and seond generation algorithms) are available andwe will disuss some of the most important of them in moredetail below.A.1 First generation algorithmsNot withstanding some of the disadvantages of theseearly methods, it must be noted that many good implemen-tations of these algorithms exist ready for use by biologists(whih is not always the ase with the newer methods).A.1.a Diret visual inspetion. This is of ourse the mostsimple and diret approah, whih was used by many biol-ogists in early work on gene expression analysis [9℄. Thismethod is best suited where the patterns of interest areknown in advane, but does not work for larger data sets



7(high number of dimensions or data points) or when onetries to disover unexpeted patterns.A.1.b Hierarhial lustering . Hierarhial lustering[14℄, [25℄, [46℄ is the most widely used method for lus-tering gene expression data and an be seen as the de fatostandard. Hierarhial lustering has the advantage thatthe results an be niely visualized (see Figure 5). Two ap-proahes are possible: a top-down approah (divisive lus-tering, see [1℄ for an example) and a bottom-up approah(agglomerative lustering, see [14℄). The latter is the mostommonly used and will be disussed here. In the agglom-erative approah eah gene expression pro�le is initiallyassigned to a single luster. The distane between everyouple of lusters is alulated aording to a ertain dis-tane measure (this results in a pairwise distane matrix).Iteratively (and starting from all singletons as lusters), thetwo losest lusters are merged giving rise to a tree stru-ture where the height of the branhes is proportional tothe pairwise distane between the lusters. Merging stopsif only one luster is left. Finally, lusters are formed byutting the tree at a ertain level or height. Note that thislevel orresponds to a ertain pairwise distane whih in itsturn is rather arbitrary (it is di�ult to predit whih levelwill give the best biologial results). Finally, note that thememory omplexity of hierarhial lustering is quadratiin the number of gene expression pro�les whih an be aproblem when onsidering the urrent size of the data sets.Several implementations of hierarhial lustering areavailable (often together with K-means and self-organizingmaps, see next setions) (see Table II).A.1. K-means lustering . K-means lustering [50℄, [55℄results in a partitioning of the data (every gene expres-sion pro�le belongs to exatly one luster) using a pre-de�ned number K of partitions or lusters (see Figure 6).K-means starts by assigning at random all the gene expres-sion pro�les to one of the N lusters. Iteratively, the enter(whih is nothing more than the average expression vetor)of eah luster is alulated, followed by a re-assignment ofthe gene expression vetors to the luster with the losestluster enter. Convergene is reahed when the lusterenters remain stationary.Note that the prede�nition of the number of lusters bythe user also is rather arbitrary (it is di�ult to predit thenumber of lusters in advane). In pratie, this makes itneessary to use a trial-and-error approah where a om-parison and biologial validation of several runs of the al-gorithm with di�erent parameter settings are neessary.A.1.d Self-organizing maps . In Self-Organizing Maps(SOMs) [28℄, [48℄, the user has to prede�ne a topology orgeometry of nodes (e.g., a two-dimensional grid�one nodefor eah luster), whih again is not straightforward. Thesenodes are then mapped into the gene expression spae, ini-tially at random and iteratively adjusted. In eah iteration,a gene expression pro�le is randomly piked and the nodethat maps losest to it is seleted. This seleted node (ingene expression spae) is then moved into the diretion ofthe seleted expression pro�le. The other nodes are also

Fig. 5. Typial result from an analysis using hierarhial lusteringusing 137 expression pro�les of dimension 8. The left side of the �gurerepresents the tree struture. The terminal branhes of this tree arelinked with the individual genes and the height of all the branhesis proportional to the pairwise distane between the lusters. Theright side of the �gure (also alled a heat map) orresponds with theexpression matrix where eah row represents an expression pro�le,eah olumn a miroarray experiment and the individual values arerepresented on a olor (green to red) or grey sale.moved into the diretion of the seleted expression pro�lebut to an extent proportional to the distane from the se-leted node in the initial two-dimensional node topology.A.2 Seond generation algorithmsIn this setion we desribe several of the newer luster-ing methods that have spei�ally been designed to lustergene expression pro�les.A.2.a Self-organizing tree algorithm. The Self-OrganizingTree Algorithm (SOTA) [20℄ ombines both self-organizingmaps and divisive hierarhial lustering. The topology ornode geometry here takes the form of a dynami binarytree. Similar to self-organizing maps, the gene expressionpro�les are sequentially and iteratively presented to the ter-minal nodes (loated at the base of the tree�these nodesare also alled ells). Subsequently, the gene expression
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Fig. 6. Typial result from an analysis usingK-means lustering with30 lusters using 3000 standardized expression pro�les of dimension15 (yeast ell yle, see Cho et al. (1998)). The plots represent the 30di�erent lusters. For eah luster, the normalized expression mea-surement (y-axis) of eah gene aross is plotted for the 15 experiments(x-axis). The bold line in eah luster is the average expression pro�lefor this luster. Note that the sum of the number of genes in eahluster equals the total number of genes submitted to the algorithm(= 3000). NG = number of genes.pro�les are assoiated with the ell that maps losest to itand the mapping of this ell plus its neighboring nodes areupdated (moved into the diretion of the expression pro-�le). The presentation of the gene expression pro�les to theells ontinues until onvergene. After onvergene theell ontaining the most variable population of expressionpro�les (variation is de�ned here by the maximal distanebetween two pro�les that are assoiated with the same ell)is split in two sister ells (ausing the binary tree to grow)where after the entire proess is restarted. The algorithmstops (the tree stops growing) when a threshold of variabil-ity is reahed for eah ell. To obtain a statistial de�ni-tion for this threshold a randomized version of the entiredata set is used (for eah expression pro�le all its expres-sion values are randomly and independently shu�ed�thisoperation destroys the atual orrelation between expres-sion pro�les) and the distanes between all possible pairsof gene expression pro�les in this version of the data arealulated. This results in the probability distribution ofthe distanes that ould our by hane (i.e., the distri-bution that desribes the probability that two unrelatedexpression pro�les have a ertain distane). The thresholdof variability an now be de�ned by hoosing a on�denelevel � (e.g., � = 5%), so that only a fration � of the ran-domized gene expression pro�les have a distane smallerthan this threshold. Using this threshold ensures that thefration of wrong assignments (unrelated pro�les assignedto the same luster) in the atual luster result is limitedby the �-value.The approah desribed in [20℄ has some properties thatmake it potentially useful for lustering gene expressionpro�les:

� The lustering proedure itself is linear in the number ofgene expression pro�les (ompare this with the quadratiomplexity of standard hierarhial lustering).� The number of lusters does not have to be known inadvane. Moreover, the proedure provides for a statistialproedure to stop growing the tree. Therefore, the user isfreed from hoosing a (arbitrary) level where the tree hasto be ut (like in standard hierarhial lustering).Also, a server running the program is available (see Ta-ble II.To our opinion, this method, however, also has somedisadvantages:� The proedure for �nding the threshold of variability istime-onsuming sine it involves the atual onstrution ofa randomized data set and the alulation of the distanesbetween all possible pairs of randomized expression pro�les.The entire proess desribed in [20℄ is thus in fat quadratiin the number of gene expression pro�les.� No biologial validation was provided showing that thisalgorithm indeed produes biologially relevant results.A.2.b Model-based lustering . Model-based lustering[15℄, [17℄, [63℄ is an approah that is not really new andhas already been used in the past for other appliationsoutside bioinformatis. In this sense it is not really a trueseond generation algorithm. However its potential use forluster analysis of gene expression pro�les has only beenproposed reently and we thus we treat it in this text as aseond generation method.Model-based lustering assumes that the data is gener-ated by a �nite mixture of underlying probability distribu-tions. Usually, multivariate normal distributions are usedfor these probability distributions. In this ase, eah lus-ter Ci is represented by a multivariate Gaussian model piin d dimensions:pi(yj j�i;�i) = 1(2�) d2 j�ij 12 exp��12(y � �i)T��1i (x� �i)�where yj is an expression pro�le and �i and �i the meanand ovariane matrix of the multivariate normal distribu-tion respetively.The ovariane matrix�i an be represented by its eigen-values deomposition, whih in general takes the followingstruture: �i = �iDiAiDTi ;whereDi is the orthogonal matrix of the eigenvetors of �i,Ai is a diagonal matrix whose elements are proportional tothe eigenvalues of �i and �i is the onstant of proportion-ality. This deomposition implies a nie geometri inter-pretation of the lusters: Di ontrols the orientation, Aiontrols the shape, and �i ontrols the volume of the lus-ter. Note that simpler forms for the ovariane struturean be used (e.g., by having some of the parameters takethe same values aross lusters), thereby dereasing thenumber of parameters that have to be estimated but alsodereasing the model �exibility (apaity to model moreomplex data strutures).



9The mixture model p itself takes then the following form:p(yj) = KXi=1 �i:pi(yj j�i;�i)where K is the number of lusters and �i is the prior prob-ability that an expression pro�le belongs to luster Ci sothat KXi=1 �i = 1:In pratie we would like, given a olletion of expressionpro�les yj(j = 1; : : : ; n) to estimate all the parameters (�i,�i, �i(i = 1; : : : ;K), and K itself) of this mixture model.In a �rst step �i, �i, �i(i = 1; : : : ;K) are estimated withan EM algorithm using a �xed value for K and a �xedovariane struture. This parameter estimation is thenrepeated for di�erent values for K and di�erent ovarianestrutures. The result of the �rst step is thus a olletionof di�erent models �tted to the data and all having a spe-i� value for K and a spei� ovariane struture. In aseond step the best model in this group of models is se-leted (i.e., the most appropriate number of lusters and aovariane struture is hosen here). This model seletionstep involves the alulation of the Bayesian InformationCriterion (BIC) [45℄ for eah model, whih is not furtherdisussed here.A good implementation for model-based lustering(alled MCLUST [15℄) is available (see Table II). Yeunget al. [63℄ reported good results using this software on sev-eral syntheti data sets and real expression data sets. Theylaimed that the performane of MCLUST on real expres-sion data was at least as good as ould be ahieved with aheuristi luster algorithm (CAST [5℄, not disussed here).A.2. Quality-based lustering . In [23℄, a lustering algo-rithm (alled QT_Clust) is desribed that produes lus-ters that have a quality guarantee whih ensures that allmembers of a luster should be oexpressed with all othermembers of this luster (this property is alled transitiv-ity). Heyer et al. de�ne the quality of a luster C as adiameter (equal to 1�mini; j 2 fsijg where sij is the jak-knife orrelation between expression pro�le i and j) butthe method an be easily extended to other de�nitions.The quality guarantee itself is de�ned as a �xed and user-de�ned threshold for the quality of eah luster.Brie�y said, the aim of QT_Clust is to �nd lusters,with a quality guarantee, ontaining a maximum numberof expression pro�les. It onsiders every expression pro�lein the data set as a luster seed (one ould also all this aluster enter) and iteratively assigns the expression pro-�les to these lusters that ause a minimal inrease in di-ameter until the diameter threshold (= quality guarantee)is reahed. Note that at this stage every expression pro-�le is made available to every andidate luster and thatthere are as many andidate lusters as there are expressionpro�les. At this point, the andidate luster that ontainsthe most expression pro�les is seleted as a valid luster

and removed from the data set where after the whole pro-ess starts again. The algorithm stops when the number ofpoints in the largest remaining luster falls below a prespe-i�ed threshold. Note that this stop riterion implies thatthe algorithm will terminate before all expression pro�lesare assigned to a luster.This approah was designed with luster analysis of ex-pression data in mind and has some properties that ouldmake it useful for this task:� By using a stringent quality guarantee it is possible to�nd lusters with tightly related expression pro�les (on-taining highly oexpressed genes). These lusters mighttherefore be good `seeds' for further analysis.� Genes not really oexpressed with other members of thedata set are not inluded in any of the lusters.There are, however, also some disadvantages:� The quality guarantee of the lusters is a user-de�nedparameter that is hard to estimate and too arbitrary. Thismethod is therefore, in pratie, hard to use by biologistsand extensive parameter �ne-tuning is neessary.� This algorithm produes lusters all having the same�xed diameter not optimally adapted to the loal datastruture.� The omputational omplexity is at least quadrati inthe number of expression pro�les.Furthermore, no ready to use implementation is available.A.2.d Adaptive Quality-Based Clustering . Adaptivequality-based lustering [10℄ was developed starting fromthe priniples of quality-based lustering (�nding lusterswith a quality guarantee ontaining a maximal number ofmembers) but was designed to irumvent some of its dis-advantages.Adaptive quality-based lustering is a heuristi iterativetwo-step approah. In the �rst step a quality-based ap-proah is followed. Using an initial estimate of the qualityof the luster (here, quality is de�ned as a radius and notas a diameter), a luster enter is loated in an area wherethe density of gene expression pro�les is loally maximal.Contrary to the original method [23℄, the omputationalomplexity of this �rst step is only linear in the number ofexpression pro�les.In the seond step, alled the adaptive step, the qual-ity of the luster�given the luster enter, found in the�rst step, that remains �xed�is re-estimated as to assessthat the genes belonging to the luster are, in a statistialsense, signi�antly oexpressed (higher oexpression thatould be expeted by hane�aording to a signi�anelevel S; e.g., S = 95%). To this end, a bimodal and one-dimensional probability distribution (the distribution on-sists of two terms: one for the luster and one for the restof the data) is �tted to the data using an EM algorithm.Note that, the omputational omplexity of this step is neg-ligible with respet to the omputational omplexity of theseond step.Finally, step one and two are repeated, using the re-estimation of the quality as the initial estimate needed inthe �rst step, until the relative di�erene between the ini-tial and re-estimated quality is su�iently small. The lus-



10ter is subsequently removed from the data and the wholeproedure is restarted. Note that only lusters whose sizeexeeds a prede�ned number are presented to the user.We feel that adaptive quality-based lustering approahhas some additional advantages over standard quality-based lustering that make it suited for the analysis of geneexpression pro�les:� In adaptive quality-based lustering the user has to spe-ify a signi�ane level S. This parameter has a strit statis-tial meaning and is therefore muh less arbitrary (ontraryto the quality guarantee used in standard quality-basedlustering). It an be hosen independently of a spei�data set or luster and it allows for a meaningful defaultvalue (95%) that in general gives good results. This makesthis approah user-friendly without the need for extensiveparameter �ne-tuning.� Adaptive quality-based lustering produes lustersadapted to the loal data struture (the lusters do nothave the same radius).� The omputational omplexity of the algorithm is linearin the number of expression pro�les.� Adaptive quality-based lustering was extensively biolog-ially validated.Furthermore, a server running the program is available(see Table II). Note also that this implementation has anintegrated approah for missing values without the nees-sity to replae them.However, the method also has some limitations:� It is a heuristi approah not proven to onverge in everysituation.� Beause of the model struture used in the seond step,some additional onstraints have to be imposed. They in-lude the fat that only standardized expression pro�lesare allowed and that the method has to be used in ombi-nation with the Eulidean distane and annot diretly beextended to other distane measures.As a onlusion to this overview of lustering algorithms,Table II gives an overview of some lustering methods forwhih the software is available for download or an be a-essed online. TABLE IIAvailability of lustering algorithms.Pakage URLCluster http://rana.lbl.gov/EisenSoftware.htmJ-Express http://www.molmine.omExpr. Pro�ler http://ep.ebi.a.uk/SOTA http://bioinfo.nio.es/sotarrayMCLUST http://www.stat.washington.edu/fraley/mlustINCLUSive www.esat.kuleuven.a.be/~dna/BioI/Software.htmlB. Preproessing of the dataAs stated at the start of this setion, lustering also im-plies performing some additional operations on the data,

preparing it for the atual luster analysis. Below, we willdisuss some of the most ommon preproessing steps. Theorder of the di�erent preproessing steps an somewhatvary between spei� implementations, we present them intheir most frequent order.B.1 NormalizationThe �rst step is the normalization of the hybridizationintensities within a single array experiment. In a two-hannel DNA miroarray experiment, several soures ofnoise (suh as di�erenes in labeling, detetion e�ieny,and in the quantity of initial RNA within the two han-nels) reate systemati soures of biases. The biases anbe omputed and removed to orret the data. As manysoures an be onsidered and as they an be estimatedand orreted in a variety of ways, many di�erent normal-ization proedures exist. We therefore do not over thistopi further here and refer to [25℄ for more details.B.2 Nonlinear transformationsIt is ommon pratie to pass expression values througha nonlinear funtion. Often the logarithm is used for thisnonlinear funtion. This is espeially suited when dealingwith expression ratios (oming from two-hannel DNA mi-roarray experiments, using a test and referene sample)sine expression ratios are not symmetrial [25℄. Upregu-lated genes have expression ratios between 1 and in�nity,while downregulated genes have expression ratios squashedbetween 1 and 0. Taking the logarithms of these expressionratios results in more symmetry between expression valuesof up- and downregulated genes.Other, but unommonly used transformations, inludesquare, square root, and inverse transformations.B.3 Missing value replaementMiroarray experiments often ontain missing values(measurements absent beause of tehnial reasons). Theinability of many luster algorithms to handle suh miss-ing values, neessitates the replaement of these values.Simple replaements suh as a replaement by 0 or by theaverage of the expression pro�le often disrupt these pro-�les. Indeed replaement by average values relies on theunrealisti assumption that all expression values are sim-ilar aross di�erent experimental onditions. Beause ofan erroneous missing value replaement genes ontaininga high number of missing values an be assigned to thewrong luster. More advaned tehniques of missing valuereplaement have been desribed [57℄ that take advantageof the rih information provided by the expression patternsof other genes in the data set.TheK-nearest neighbor method selets theK genes withan expression pro�les most similar (e.g., based on an Eu-lidean distane) to the gene of whih the missing valueneeds to be replaed. The missing value is then substitutedby the similarity-weighted average of the orresponding val-ues in the pro�les of the K losest genes. This algorithmseems relatively robust against the setting of the value K(the number of losest genes seleted for inferene of the



11missing value) and is independent of the data struture.An alternative method uses an iterative tehnique basedon singular value deomposition (SVD) iteratively to iden-tify the most important eigenvetors in the data set (oftenalled eigengenes and eigenarrays in the ase of miroar-ray data). These onstitutes a set of mutually orthogonalexpression patterns that an, when linearly ombined, re-onstrut the expression levels of all genes in the data set.In eah iteration the pro�le of the gene ontaining a miss-ing value is regressed against a seletion of the k most im-portant eigengenes. Based on a linear ombination of theeigengenes determined by the readily determined regressionoe�ients, the missing value is reonstruted. Beause ofthe properties of SVD, this tehnique is optimally adaptedto data sets ontaining an expression pro�le with a pro-nouned variation.Remark that when a luster algorithm is used based onthe same proedure, as is used by the algorithm for missingvalue replaement, faint expression patterns in the dataset an be arti�ially enhaned. Inferred values should be�agged to avoid drawing unwarranted onlusions.Finally note that some implementations of algorithmsonly make use of the measured values to derive the lustersand as suh obviate the need for missing value replaement[10℄.B.4 FilteringAs stated in the overview setion, a set of miroarray ex-periments, generating gene expression pro�les, frequentlyontain a onsiderable number of genes that do not re-ally ontribute to the biologial proess that is being stud-ied. The expression values of these pro�les often show lit-tle variation over the di�erent experiments (they are alledonstitutive with respet to the biologial proess studied).Moreover, these onstitutive genes will have seemingly ran-dom and meaningless pro�les after standardization (divi-sion by a small standard deviation resulting in noise in-�ation), whih is also a ommon preproessing step (seefurther). Another problem with miroarray data sets isgiven by the fat that they regularly ontain highly un-reliable expression pro�les with a onsiderable number ofmissing values. Due to their number, replaing these miss-ing values in these expression pro�les is not possible withinthe desired degree of auray.The quality of the lusters would signi�antly degrade,if these data sets would be passed to the lustering algo-rithms as suh. Most lustering algorithms assign everyexpression pro�le in the data to one of the lusters, eventhe ones of poor quality, orrupting the ontent and theaverage pro�le of these lusters making them less suitablefor further analysis. A solution to this problem is to uselustering algorithms that do not assign every pro�le to aluster (e.g., quality-based lustering). Another, more sim-ple solution (that an also be used in ombination with theprevious solution), is to remove at least a fration of theundesired genes from the data. This proedure is in gen-eral alled �ltering [14℄. Filtering involves removing geneexpression pro�les from the data set that do not satisfy a

one or possibly more simple riteria. Commonly used rite-ria inlude a minimum threshold for the standard deviationof the expression values in a pro�le (removal of onstitu-tive genes) and a threshold on the maximum perentage ofmissing values. Another similar method for �ltering takesa �xed number or fration of genes best satisfying one ri-terion (like the riteria stated above).B.5 Standardization or resalingBiologists are mainly interested in grouping gene expres-sion pro�les that have the same relative behavior; i.e., genesthat are up- and downregulated together. Genes showingthe same relative behavior but with diverging absolute be-havior (e.g., gene expression pro�les with a di�erent baseline and/or a di�erent amplitude but going up and downat the same time) will have a relatively high Eulideandistane. Cluster algorithms based on this distane mea-sure will therefore wrongfully assign these genes to di�erentlusters.This result an largely be prevented by applying stan-dardization or resaling to the gene expression pro�les.Gene expression pro�les showing the same relative behav-ior will have a small(er) Eulidean distane after resaling[25℄.Consider a gene expression pro�le g(g1; g2; : : : ; gn) withaverage expression level � and standard deviation �.Resaling is ommonly done by replaing every expressionlevel gi in g by gi � ��and repeating this for every expression vetor in the dataset. This operation results in a olletion of expression pro-�les all having average zero and standard deviation 1 (i.e.,the absolute di�erenes in expression behavior have beenlargely removed). Note that the division by the standarddeviation is sometimes omitted (resaling is then alledmean entering).C. Cluster validationAs mentioned before, lustering will produe di�erent re-sults. Even random data often produes lusters dependingon the spei� hoie of preproessing, algorithm, and dis-tane measure. Even random data an be fed into manylustering algorithms and deliver some lusters. Thereforevalidation of the relevane of the luster results is of utmostimportane. Validation an be either statistial or biologi-al. Statistial luster validation an be done by assessingluster oherene, by examining the preditive power ofthe lusters, or by testing the robustness of a luster resultagainst the addition of noise.Alternatively, the relevane of a luster result an be as-sessed by a biologial validation. Of ourse it is hard, not tosay impossible, to selet the best luster output sine `thebiologially best' solution will only be known if the biolog-ial system studied is ompletely haraterized. Althoughsome biologial systems have been desribed extensively,none suh ompletely haraterized benhmark system isnow available. A ommon method to biologially validate



12luster outputs is to searh for enrihment of funtionalategories within a luster. Detetion of regulatory motifs(see [10℄) is also an appropriate biologial validation of theluster results. Some of the reent methodologies desribedin literature to validate luster results will be highlightedin the following.C.1 Testing luster ohereneBased on biologial intuition, a luster result an be on-sidered reliable if the within luster distane is small (i.e.,all genes retained are tightly oexpressed) and the lusterhas an average pro�le well delineated from the remainderof the data set (maximal interluster distane). Suh rite-ria an be formalized in several ways, suh as the sum-of-squares riterion of K-means [55℄ , silhouette oe�ients[26℄, or Dunn's validity index [2℄. These an be used asstand-alone statistis to mutually ompare luster results.They an also be used as an inherent part of luster al-gorithms, if their value is optimized during the lusteringproess.C.2 Figure of meritThe Figure Of Merit (FOM) [64℄ is a simple quantitativedata-driven methodology that allows omparisons betweenoutputs of di�erent lustering algorithms. The method-ology is related to the jakknife and leave-one-out ross-validation. The method goes as follows. The lusteringalgorithm (for the genes) is applied to all experimental on-ditions (the data variables) exept for one left-out ondi-tion. If the algorithm performs well, we expet that if welook at the genes in a given luster, their values for theleft-out ondition will be highly oherent. Therefore, weompute the FOM for a lustering result by summing, forthe left-out ondition, the squares of the deviations of eahgene relative to the mean of the genes in its luster forthis ondition. FOM measures the within-luster similar-ity of the expression values of the removed experiment andtherefore re�ets the preditive power of the lustering. Itis expeted that removing one experiment from the datashould not interfere with the luster output if the outputis robust. For luster validation, eah ondition is subse-quently used as a validation ondition and the aggregateFOM over all onditions is used to ompare luster algo-rithms. Although simple at �rst glane, appliation of theFOM proedure to real biologial data is not straightfor-ward. At �rst the FOM as a measure of the luster predi-tive power tends to inrease proportionally to the numberof lusters. To ompensate for this an adjusted FOM wasdesribed. Seondly, outputs of luster algorithms an onlybe ompared if they onsist of the same number of lustersand if all genes were retained during lustering.C.3 Sensitivity analysisGene expression levels are the superposition of real bi-ologial signals and experimental errors. A way to assignon�dene to a luster membership of a gene onsists inreating new in silio replias of the miroarray data byadding to the original data a small amount of arti�ial noise

(similar to the experimental noise in the data) and luster-ing the data of those replias. If the biologial signal isstronger than the experimental noise in the measurementsof a partiular gene, adding small arti�ial variations (inthe range of the experimental noise) to the expression pro-�le of this gene will not drastially in�uene its overall pro-�le and therefore will not a�et its luster membership. Inthis ase, the luster membership of that partiular geneis robust with respet to sensitivity analysis and a reliableon�dene an be assigned to the lustering result of thatgene. However, for genes with low signal to noise ratios,the outome of the lustering result will be more sensitiveto adding arti�ial noise. Thus, sensitivity analysis willlet us detet whih lusters are robust within the range ofexperimental noise and therefore trustworthy for furtheranalysis.The main issue in this method is to hoose the noise levelfor sensitivity analysis. Bittner et al. [6℄ perturb the databy adding random Gaussian noise with zero mean and astandard deviation that is estimated as the median stan-dard deviation for the log-ratios for all genes aross theexperiments (as was mentioned earlier in most DNA datasets, the log-ratio is used as an estimate of the di�erentialexpression level). This estimate of the noise level does notonly aount for the experimental noise but to a ertainextent inludes variation due to di�erential expression andthus is an overestimate of the experimental error. More-over, using Gaussian noise is based on the strong assump-tion that errors on the log-ratio are normally distributed.This impliitly assumes that ratios are unbiased estimatorsof relative expression. Reality shows often otherwise.To ompare the lustering results of the di�erent repli-as, Bittner et al. [6℄ developed a statistis that ounts thefrequeny with whih pairs of genes, lustered together inthe original data set are lustered together in distint repli-as (see above). Stable lusters of genes should emerge ifeah pair of genes lusters together reliably. Their statistisis reminisent of the RAND index [65℄.The bootstrap analysis methods desribed by Kerr etal. [27℄ to identify statistially signi�ant expressed genesor to assess the reliability of a lustering result, o�ers amore statistially founded basis for sensitivity analysis andoveromes some of the problems of the method desribedby Bittner et al. [6℄. Bootstrap analysis uses the resid-ual values of a linear ANOVA model as an estimate ofthe measurement error. By using an ANOVA model non-onsistent measurement errors an be separated from vari-ations aused by alterations in relative expression or byonsistent variations in the data set. These errors are as-sumed to be independent with mean 0 and onstant vari-ane �2 but no expliit assumption on their distribution ismade. The residuals are subsequently used to generate newrepliates of the data set by bootstrapping (adding residualnoise to estimated values). Newly generated data sets arelustered and luster results are ompared.



13C.4 Use of di�erent algorithmsJust as lustering results are sensitive to adding noise,they are sensitive to the hoie of lustering algorithm usedand the spei� parameter settings of a partiular algo-rithm. Many lustering algorithms are available, eah ofthem with di�erent underlying statistis and inherent as-sumptions about the data. The best way to infer biologialknowledge from a lustering experiment is to use di�er-ent algorithms with di�erent parameter settings. Clustersdeteted by most algorithms will re�et the pronounedsignals in the data set. Biologists tend to prefer algorithmswith a deterministi output sine this gives the illusion thatwhat they �nd is `right'. However, nondeterministi algo-rithms o�er an advantage for luster validation sine theiruse impliitly inludes a form of sensitivity analysis.Performing sensitivity analysis and repeating luster ex-periments is of ourse only useful if statistial measuresan be developed to ompare the outome of all these dif-ferent analyses. Analyzing a miroarray experiment doesnot only involve the development of statistial data-miningalgorithms to luster the information but also to statisti-ally ompare the output of these algorithms.C.5 Enrihment of funtional ategoriesOne way to (biologially) validate results from lusteringalgorithms is to ompare the gene lusters with existingfuntional lassi�ation shemes. In suh shemes, genesare alloated to one or more funtional ategories [17℄, [50℄representing their biohemial properties, biologial roles,and so on. Finding lusters that have been signi�antly en-rihed for genes with similar funtion is proof that a spei�lustering tehnique produes biologially relevant results.As stated in the overview setion, the results ofthe expression pro�ling experiment of Cho et al. [9℄studying the yeast ell yle (Saharomyes erevisiae)in a synhronized ulture is often used as a benh-mark data set. It ontains 6220 expression pro-�les taken over 17 time points (measurements over10-min intervals, overing nearly two ell yles, alsosee http://ellyle-www.stanford.edu). One ofthe reasons that this data is so frequently used asbenhmark data for the validation of new luster-ing algorithms is beause the majority of the genesinluded in the data have been funtionally lassi-�ed [40℄ (MIPS database, see http://mips.gsf.de/proj/yeast/atalogues/funat/index.html) making itpossible to biologially validate the results.Assume that a ertain lustering method �nds a set oflusters in the Cho et al. data. We ould objetively lookfor funtionally enrihed lusters as follows: suppose thatone of the lusters has n genes where k genes belong toa ertain funtional ategory in the MIPS database andsuppose that this funtional ategory in its turn ontains fgenes in total. Also suppose that the total data set ontainsg genes (in the ase of Cho et al. [9℄, g would be 6220).Using the umulative hypergeometri probability distribu-tion, we ould alulate the probability or P -value that thisdegree of enrihment ould have ourred by hane; i.e.,

what is the hane of �nding at least k genes in this spei�luster from this spei� funtional ategory by hane:P = 1�k�1Xi=0 � fi �� g � fn� i �� gn � =min(n;f)Xi=k � fi �� g � fn� i �� gn � :These P -values an be alulated for eah funtional at-egory in eah luster. Sine there are about 200 funtionalategories in the MIPS database, only lusters where theP -value is smaller than 0.0003 for a ertain funtional at-egory, are said to be signi�antly enrihed (level of signif-iane 0.05). Note that these P -values an also be usedto ompare the results from funtionally mathing lus-ters identi�ed by two di�erent lustering algorithms on thesame data. As an example of luster validation and asan illustration of our adaptive quality-based lustering, weompare K-means and adaptive quality-based lusteringon the Cho et al. data. We performed adaptive quality-based lustering [10℄ using default parameters (in partiu-lar, the signi�ane level is set at 95%) and ompare theseresults with those for K-means reported by Tavazoie etal. [50℄. The genes in eah luster have been mapped tothe funtional ategories in the MIPS database and thenegative base-10 logarithm of the hypergeometri P -values(representing the degree of enrihment) have been alu-lated for eah funtional ategory in eah luster. In Ta-ble III, we ompare enrihment in funtional ategories forthe three most signi�ant lusters. To ompare K-meansand adaptive quality-based lustering, we identi�ed fun-tionally mathing lusters manually. The �rst olumn (�Cl.#, AC�) gives the index of the luster identi�ed by adap-tive quality-based lustering. The seond olumn (�Cl. #,KM�) gives the index of the mathing luster for K-meansas desribed in Tavazoie et al. [50℄. The third olumn (�#Gene, AC�) gives the number of genes of in the lusterfor adaptive quality-based lustering. The fourth olumn(�# Gene, KM�) gives the number of genes of in the lus-ter for adaptive quality-based lustering. The �fth olumn(�MIPS funtional ategory�)lists the signi�ant funtionalategories for this luster. The sixth olumn (�In at., AC�)gives the number of genes of the orresponding funtionalategory in the luster for adaptive quality-based luster-ing. The seventh olumn (�In at., KM�) gives the numberof genes of the orresponding funtional ategory in theluster for K-means. The eighth olumn (�P -val.�) givesthe negative logarithm in base 10 of the hypergeometriP -value for adaptive quality-based lustering. The eightholumn (�P -val.�) gives the negative logarithm in base 10of the hypergeometri P -value for K-means (NR = not re-ported.) Although we do not laim to draw any onlusionfrom this single table, we observe that the enrihment infuntional ategories in stronger for adaptive quality-basedlustering than forK-means. This result and several othersare disussed extensively in [10℄.



14TABLE IIIComparison of funtional enrihment on the yeast ell yle data of Cho et al. for adaptive-quality based lusteringand K-means.Cl. # Cl. # # Gene # Gene MIPS funtional ategory In at. In at. P -val. P -val.AC KM AC KM AC KM AC KM1 1 302 164 ribosomal proteins 101 64 80 54organization of ytoplasm 146 79 77 39protein synthesis 119 NR 74 NRellular organization 211 NR 34 NRtranslation 17 NR 9 NRorganization of hromosome struture 4 7 1 42 4 315 170 mitohondrial organization 62 32 18 10energy 35 NR 8 NRproteolysis 25 NR 7 NRrespiration 16 10 6 5ribosomal proteins 24 NR 4 NRprotein synthesis 33 NR 4 NRprotein destination 49 NR 4 NR5 2 98 186 DNA synthesis and repliation 20 23 18 16ell growth and division, DNA synthesis 48 NR 17 NRreombination and DNA repair 12 11 8 5nulear organization 32 40 8 4ell-yle ontrol and mitosis 20 30 7 8V. Searhing for ommon binding sites oforegulated genesIn the previous setion, we desribed the basi ideas un-derlying several lustering tehniques together with theiradvantages and shortomings. We also disussed the pre-proessing steps neessary to make miroarray data suit-able for lustering. Finally, we desribed methodologies forvalidating the result of a lustering algorithm. We an nowmake the transition towards looking at the groups of genesgenerated by lustering and study the sequenes of thesegenes to detet motifs that ontrol their expression (andause them to luster together in the �rst plae).Given a luster of genes with highly similar expressionpro�les, the next step in the analysis is the searh for themehanism that is responsible for their oordinated be-havior. We basially assume that oexpression frequentlyarises from transriptional oregulation. As oregulatedgenes are known to share some similarities in their regu-latory mehanism, possibly at transriptional level, theirpromoter regions might ontain some ommon motifs thatare binding sites for transription regulators. A sensibleapproah to detet these regulatory elements is to searhfor statistially overrepresented motifs in the promoter re-gion of suh a set of oexpressed genes [7℄, [43℄, [44℄, [50℄,[66℄.In this setion we desribe the two major lasses of meth-ods to searh for overrepresented motifs. The �rst lassof methods are string-based methods that mostly rely onounting and omparing oligonuleotide frequenies. Theseond lass of methods are based on probabilisti sequenemodels. For these methods, the model parameters are es-timated using maximum likelihood or Bayesian inferene.

Table IV gives an overview of some of the methods de-sribed in the setion that an be aessed online or wherethe software is available for download.TABLE IVAvailability of motif finding algorithms.Pakage URLRSA tools www.umb.ulb.a.be/bioinformatis/rsa-tools/YMF abstrat.s.washington.edu/~blanhem/gi-bin/YMF.plConsensus ural.wustl.edu/ softwares.htmlMEME meme.sds.edu/ meme/website/Gibbs Sampler bayesweb.wadsworth.org/gibbs/gibbs.htmlAlignACE atlas.med.harvard.edu/BioProspetor bioprospetor.stanford.edu/INCLUSive www.esat.kuleuven.a.be/~dna/BioI/Software.htmlIn this setion, we �rst start with a disussion of theimportant fats that we an learn by looking at a realistibiologial example. Prior knowledge about the biology ofthe problem at hand will failitate the de�nition of a goodmodel. Next, we disuss the di�erent string-based meth-ods, starting from a simple statistial model and graduallyre�ning the models and the statistis to handle more om-plex on�gurations. Then we swith to the probabilistimethods and we introdue Expetation Maximization formotif �nding. In the Setion VI, we disuss Gibbs samplingfor motif �nding. This method is less well known than Ex-petation Maximization and, yet, it is more e�etive for



15motif �nding in DNA sequenes. We therefore explain thebasi ideas underlying this method and overview the exten-sions, inluding our own work, that are neessary for thepratial use of this method.A. Realisti sequene modelsTo searh for ommon motifs in sets of upstream se-quenes a realisti model should be proposed. Simple motifmodels are designed to searh for onserved motifs of �xedlength, while more omplex models will inorporate vari-ability like insertions and deletions into the motif model.But not only the model of the binding site itself is impor-tant also the model of the bakground sequene in whihthe motif is hidden and the number of times a motif o-urs in the sequene play important roles. For instane,there are some major di�erenes in transriptional regula-tion between prokaryotes (organisms without ell nuleus)and eukaryotes (organisms whose ells ontain a nuleus).In higher eukaryotes there are typially multiple opies ofa binding site present in the upstream region of a gene toenhane the ativity of a binding fator.To illustrate this omplexity, we look at an example inbaker's yeast (S. Cerevisiae). Figure 7 gives a shematirepresentation of the upstream sequenes from 11 genesin S. Cerevisiae whih are regulated by the Cb�-Met4p-Met28p omplex and Met31p or Met32p in response tomethionine [58℄. The onsensus (whih is the dominantDNA pattern desribing the motif) for these binding sitesis given by TCACGTG for the Cb�-Met4p-Met28p omplexand AAAACTGTGG for Met31p or Met32p [58℄. A logo repre-sentation of the aligned instanes of the two binding sitesis shown in Figure 8. Suh a logo represents the frequenyof eah nuleotide at eah position, the relative size of thesymbol represent the relative frequeny of eah base at thisposition while the total height of the symbols representthe magnitude of the deviation from a uniform (noninfor-mative) distribution. Figure 7 shows the loations of thetwo binding sites in the region 800 base pairs upstream oftranslation start. It is learly from this piture that thereare several possible on�gurations of the two binding sitespresent in this data set. First of all, it is important to notethat motifs an our on both strands. Transription fa-tors indeed bind diretly on the double-stranded DNA andtherefore motif detetion software should take this fat intoaount. Seond, sequenes ould have either zero, one, ormultiple opies of a motif. This example gives an india-tion of the kind of data that ome with a realisti biologialdata set.A.1 Palindromi motifsPalindromi motifs are a speial type of transriptionfator binding site from a omputational point of view.Remember that the DNA double-helix is reated by thehybridization of the omplementary bases A-T and G-C.A palindromi binding site is a subsequene that is exatlythe same as its own reverse omplement. As an example:if we take the omplement of the sequene TCACGTGA, thisreturns AGTGCACT and if we read this string in the reverse

Fig. 8. Logo representation of the transription fator binding sitespresent in the MET data set.order (as the two strands of the DNA helix have oppositeorientations) it will be exatly the same as the originalsequene. The �rst motif in Figure 8 is an example of amotif with a palindromi ore.A.2 Gapped motifsA seond lass of speial motifs are gapped motifs orspaed dyads. Suh a motif onsists of two smaller on-served sites separated by a ga+p or spaer. The spaerours in the middle of the motif beause the transriptionfators bind as a dimer. This means that the transriptionfator is made out of two subunits that have two sepa-rate ontat points with the DNA sequene. The partswhere the transription fator binds to the DNA are on-served but are typially rather small (3-5bp). These twoontat points are separated by a non-onserved gap orspaer. This gap is mostly of �xed length but might beslightly variable. Figure 9 shows a logo representation ofthe FNR binding site in bateria.
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Fig. 7. Shemati representation of the upstream region of a set of oregulated genes. Several possible ombinations of the two motifs arepresent: (1) motifs our on both strands, (2) some sequenes ontain one or more opies of the two binding sites, or (3) some sequenes donot ontain a opy of a motif.A.3 Cooperatively binding fators and modulesCurrently another important researh topi is the searhfor ooperatively binding fators [61℄. When only one ofthe transription fators binds there is no ativation butthe presene of two or more transription fators ativatesthe transription of a ertain gene. If we translate thisto the motif �nding problem we ould either searh forindividual motifs and try to �nd, among the list of possibleandidates, motifs that tend to our together. Anotherpossibility is to searh for multiple motifs at the same time.B. Oligonuleotide frequeny analysisThe most intuitive approah to extrat a onsensus pat-tern for a binding site is a string-based approah, wheretypially overrepresentation is measured by exhaustive enu-meration of all oligonuleotides. The observed number ofourrenes of a given motif is ompared to the expetednumber of ourrenes. The expeted number of our-renes and the statistial signi�ane of a motif an be es-timated in many ways. In this setion we give an overviewof the di�erent methods.A basi version of the enumeration methods was imple-mented by van Helden et al. [58℄. They presented a simpleand fast method for the identi�ation of DNA binding sitesin the upstream regions from families of oregulated genesin S. erevisiae. This method searhes for short motifs of�ve to six base pairs long. First, for eah oligonuleotideof a given length, we ompute the expeted frequeny ofthe motif from all the non-oding, upstream regions in thegenome of interest. Based on this frequeny table, we om-pute the expeted number of ourrenes of a given oligonu-leotide in a spei� set of sequenes. Next, the expetednumber of ourrenes is ompared to the atual, ounted,number of ourrenes in the data set. Finally, we om-pute a signi�ane oe�ient that takes into aount thedistint number of oligonuleotides. A binomial statistiis appropriate in the ase where there are non-overlappingsegments.Later, van Helden et al. [59℄ extended their method to

�nd spaed dyads, these are motifs onsisting of two smallonserved separated by a �xed spaer. The spaer an bedi�erent for distint motifs and therefore the spaer is sys-tematially varied between 0 and 16. The signi�ane ofthis type of motif an be omputed based on the ombinedsore of the two onserved parts in the input data or basedon the estimated omplete dyad frequeny from a bak-ground data set.The greatest shortoming of this method is that there areno variations allowed within an oligonuleotide. Tompa [54℄addressed this problem when he proposed an exat methodto �nd short motifs in DNA sequenes. Tompa used adi�erent measure than van Helden et al. to alulate thestatistial signi�ane of motif ourrenes. First, for eahk -mer s with an allowed number substitutions, the numberof sequenes in whih s is found is alulated. Next, theprobability ps of �nding at least one ourrene of s in asequene drawn from a random distribution is estimated.Finally, the assoiated z -sore is omputed aszs = Ns �NpspNps(1� ps) :zs gives a measure of how unlikely it is to have Ns o-urrenes of s given the bakground distribution. Tompaproposed an e�ient algorithm to estimate ps from a setof bakground sequenes based on a Markov hainSinha and Tompa [47℄ extended this method to inludespaers in the motif, whih allows more variability of themotif. Sine they were working with prokaryotes, they sim-pli�ed the model by stating that there is only one opy ofthe binding site in eah sequene. Again they omputedthe z -sore based on the ounted number of instane Ns ofoligonuleotide s and the expeted number of ourrenesXs in a random data set X . The problem is to �nd goodestimates of E(Xs) and �(Xs).An elaborate desription of the solution to this problemis presented by Niodème et al. [42℄. They lay out themathematial foundations build around generating fun-tions to quantify the expeted ourrene of an unrestrited



17regular expression in a random text. Suh a generatingfuntion enodes exatly all the information relative to thefrequeny of ourrene of a regular expression in randomtexts. Niodème et al. show that those generating fun-tions are rational and omputable at reasonable ost formost patterns.Another interesting string-based approah is based onthe representation of a set of sequenes with a su�x tree[38℄, [60℄. Sagot et al. [60℄ have used su�x trees to searhfor single motifs in whole baterial genomes. Marsan et al.[38℄ later extended the method to searh for ombinationsof motifs. The proposed on�guration of a strutured mo-tif is a set of p motifs separated by a spaer that might bevariable. The variability is limited to �2bp around an av-erage gap length. They also allow for variability within thebinding site. The representation of upstream sequenes assu�x trees resulted in an e�ient implementation despitethe large number of possible ombinations.C. Probabilisti methodsWhile in the previous setion a binding site was modeledas a set of strings, the following methods are all based ona representation of the motif model with a position weightmatrix.C.1 Probabilisti model of sequene motifsIn the simplest model, we have a set of DNA sequeneswhere eah sequene ontains a single opy of the motifof �xed length. (For the sake of simpliity, we will on-sider here only models of DNA sequenes, but the wholepresentation applies diretly to sequenes of amino-aids.)Exept for the motif, a sequene is desribed as a sequeneof independent nuleotides generated aording to a sin-gle disrete distribution �0 = (qA0 ; qC0 ; qG0 ; qT0 )T alled thebakground model. The motif �W itself is desribed by whatwe all a position weight matrix, whih are W independentpositions generated aording to di�erent disrete distribu-tions qbi : �W = 0BB� qA1 qA2 : : : qAWqC1 qC2 : : : qCWqG1 qG2 : : : qGWqT1 qT2 : : : qTW 1CCA :If we known the loation ai of the motif in a sequene Si,the probability of this sequene given the motif position,the motif matrix, and the bakground model isP (Sijai; �W ; �0) = ai�1Yj=1 qSij0 ai+W�1Yj=ai qSijj�ai+1 LYj=ai+W qSij0 :Wherever appropriate, we will pool the motif matrix andthe bakground model into a single set of parameters� = (�0; �W ). For a set of sequenes, the probability ofthe whole set S = fS1; : : : ; SNg given the alignment (i.e.,the set of motif positions), the motif matrix, and the bak-ground model isP (SjA; �) = NYi=1P (Sijai; �): (1)

Fig. 10. In this basi sequene model, eah sequene ontains one andonly one opy of the motif. The �rst part of the sequene is generatedaording to the bakground model �0, then the motif is generatedby the motif matrix �W , after whih the rest of the sequene is againgenerated aording to the bakground model.
The sequene model is illustrated in Figure 10. The idea ofthe Expetation-Maximization algorithm for motif �ndingis to �nd simultaneously the motif matrix, the alignmentposition, and the bakgroundmodel that maximize the like-lihood of the sequene. Gibbs sampling for motif �ndingextends Expetation Maximization in a stohasti fashionby not looking for the maximum likelihood on�gurationbut by weighting alignments aording to their likelihood.C.2 Expetation MaximizationOne of the �rst implementation to �nd a matrix represen-tation of a binding site was a greedy algorithm by Hertz etal. [21℄ to �nd the site with the highest information ontent(whih is the entropy of the disrete probability distribu-tion represented by the motif matrix). This algorithm wasapable of identifying a ommon motif that is present onein every sequene. This algorithm has been substantiallyimproved over the years [22℄. In their latest implemen-tation, CONSENSUS, Hertz and Stormo have provided aframework to estimate the statistial signi�ane of a giveninformation ontent sore based on large deviation statis-tis.Within the maximum likelihood estimation framework,Expetation Maximization (EM) is the �rst hoie of opti-mization algorithm. EM is a two-step iterative proedurefor obtaining the maximum likelihood parameter estimatesfor a model of observed data and missing values. In theexpetation step, the expetation of the data and missingvalues is omputed given the urrent set of model parame-ters. In the maximization step, the parameters that maxi-mize the likelihood are omputed. The algorithm is startedwith a set of initial parameters and iterates over the twodesribed steps until the parameters have onverged.Sine EM is a gradient asent method, EM strongly de-pends on the initial onditions. Poor initial parametersmay lead EM to onverge to a loal minimum.EM for motif �nding was introdued by Lawrene andReilly [30℄ and was an extension of the greedy algorithmof Hertz et al. [21℄. It was primarily intended for searh-ing motifs in related proteins the desribed method ouldalso be applied to DNA sequenes. The basi models as-sumption is that eah sequene ontains exatly one opyof the motif, whih might be reasonable in proteins butis too strit in DNA. The starting position of eah motifinstane is unknown and is onsidered as being a missing



18value from the data. If the motif positions are known thenthe observed frequenies of the nuleotides at eah posi-tion in the motif are the maximum likelihood estimates ofmodel parameters. To �nd the starting positions, eah sub-sequene is sored with the urrent estimate of the motifmodel. These updated probabilities are used to re-estimatethe motif model. This proedures is repeated until onver-gene.Sine assuming there is exatly one opy of the motif persequene is not really biologial sound, Bailey and Elkanproposed an advaned EM implementation for motif �nd-ing alled MEME [3℄. Although MEME was also primarilyintended to searh for protein motifs, MEME an also beapplied to DNA sequenes. MEME operates in three dif-ferent modes whih orrespond to the number of opies of amotif in a sequene. These modes are: exatly one opy ofthe motif in eah sequene, zero or one opy of the motif ineah sequene or any number of opy of the motif in eahsequene.To overome the problem of initialization and gettingstuk in loal minima, MEME propose to initialize the al-gorithm with a motif model based on a ontiguous subse-quene that gives the highest likelihood sore. Therefore,eah substring in the sequene set is used as a starting pointfor a one-step iteration of EM. Then the motif model withthe highest likelihood is retained and used for further opti-mization steps until onvergene. The orresponding motifpositions are then masked and the proedure is repeated.Finally, Cardon and Stormo proposed an EM algorithmto searh for gapped motifs [8℄.VI. Gibbs sampling for motif findingThe goal of motif �nding is to determine whether thesequenes in a set of DNA sequenes or proteins share someunspei�ed patterns alled motifs. This task is in ontrastwith motif searhing where a set of sequenes is sreenedfor some known motifs.A. Bayesian infereneIn Bayesian inferene, we use the likelihood funtion andobservations to infer the probability of di�erent sets ofmodel parameters. Let us suppose we have a data set Dwhose likelihood an be omputed aording to some modelM with parameters !:P (Dj!;M):Working with a single �xed model, we drop the no-tation for the model. Using Bayes' rule P (AjB) =P (BjA)P (A)=P (B), we an write the following to desribethe relationship between data and parameters:p(!jD) = P (Dj!)p(!)P (D) :(We use the notation p to desribe a ontinuous probabil-ity distribution versus the notation P for a disrete dis-tribution and we assume here that the data has disretevalues while the parameters have ontinuous values). p(!)

is alled the prior distribution and we set it up to ontainthe a priori knowledge that is available about the modelingtask (for example, we an hoose a prior p(!) that penal-izes omplex models to prevent over�tting). P (Dj!) is thelikelihood funtion suh as the one we desribed above.P (D) is the a priori distribution of the data, whih wean atually ompute from the prior and the likelihood asP (D) = R� P (Dj�)p(�)d�. Finally, p(!jD) is the posteriordistribution of the parameters after inorporating the dataD and it gives the probability distribution of the parame-ters based on the data and on the prior.B. Sampling methods for optimizationThe idea behind sampling methods for optimization isthe following. In maximum likelihood, we hoose a set ofparameters to desribe our data by!� = argmax!P (Dj!):However, the likelihood funtion P (Dj!) ontains muhmore information about the data than just the point esti-mate P (Dj!�). In fat, the posterior distribution p(!jD) =P (Dj!)P (!)=P (D) provides a more aurate representa-tion of whih parameter values are good andidates to de-sribe our data. For example, if p(!jD) is multimodal, themodes provide very di�erent models that desribe the datawell. Also, we an onstrut on�dene intervals for theparameters based on this distribution while we do not getthis information from an optimal point estimate. Thus it isadvantageous to work with the full probability distributioninstead of limiting ourselves to a point estimate.In some ases, it is possible to desribe the posterior dis-tribution analytially. However, for more omplex modelssuh as our sequene model, it is impossible to handle theprobability distributions analytially. In that ase, sev-eral methods are available to generate data aording to aomplex probability distribution. These are methods suhas the Metropolis-Hasting algorithm [41℄ (whih is well-known as the foundation of the simulated annealing algo-rithm for global optimization), the hybrid Markov-ChainMonte-Carlo method [11℄, and Gibbs sampling [49℄.Here we will desribe the general Gibbs sampling methodand how it an be applied to motif �nding. If we assumethat we an generate samples w(i) aording to the pos-terior distribution p(!jD), we an use these samples toapproximate quantities of interest (possibly using Monte-Carlo integration). For example, we an approximate aglobal solution with maximum posterior probability bytraking the sample with the highest posterior probabilityif we draw enough sample from the posterior distribution.Further, we an approximate the posterior mean solution!PME = Z! !P (!jD)d!by averaging the samples drawn from the posterior distri-bution.



19C. The missing data problem and data augmentation meth-odsBefore proeeding to the desription of the general Gibbssampling method, we need to expliit further how sam-pling an be applied to motif �nding. The idea is to gen-erate plausible motifs and alignments by drawing samples(�(i); A(i)) from the posterior p(�; AjS). From these sam-ples, we an then trak a best motif matrix or alignmentor ompute an average motif matrix or alignment.However, we need to make an important semanti dis-tintion. Indeed, the alignment A is a property of the data,not of the model. But, while the set of sequenes S is avail-able, the alignment is unknown. If the alignment was avail-able in the form of sequene labels, our task of estimatingthe motif matrix would be greatly failitated. So, when weset up the likelihood funtion P (SjA; �), the alignment isin fat missing from our sequene data. Therefore, reov-ering the alignment is alled the missing data problem [3℄.Moreover, reovering the alignment is often less importantthan estimating the model parameters �. We ould thustry to set up diretly the likelihood P (Sj�). But writingdown this likelihood funtion diretly is next to impossible.It is only by introduing the alignment that we get a simpleexpression for our likelihood. Simplifying the likelihood byintroduing new variables is alled the data augmentationmethod.D. Markov-hain Monte-Carlo methodsWe an now go into how to sample from the posteriordistribution. Atually, Markov-hain Monte-Carlo meth-ods are methods to sample from any distribution p(x) pro-vided it has an appropriate struture. While samplingfrom an arbitrary one-dimensional probability density anbe ahieved simply using a uniform random generator onthe [0,1℄ interval and using the umulative density fun-tion, sampling from high-dimensional probability densitiesis hard. Markov-hain Monte-Carlo method exploit an im-portant property of Markov hains, whih is that data gen-erated by a Markov hain will eventually (after a number ofsamples going to in�nity) be generated aording to a �xedprobability distribution alled the equilibrium distributionof the Markov hain.A Markov hain is a stohasti proess that generates asequene of samples si aording to the following relation-ship p(sijsi�1; si�2; : : : ; s1) = p(sijsi�1). This relationshipmeans that any value in the sequene depends only on theprevious one and is independent of all the earlier ones. Thisproperty is alled the Markov property.Markov hains have the remarkable property that, start-ing from an arbitrary initial ondition, the distribution ofthe samples of the Markov hain will onverge to an equi-librium distribution alled a stationary distribution. Thusin pratie, after a su�ient number of transient samples(alled burn-in period), the Markov hain will draw ap-proximately from this stationary distribution. Spei�ally,if we have that �jTjk = �kTkj ;

then � is a stationary distribution. This ondition is alledthe ondition of detailed balane.E. Gibbs samplingGibbs sampling is a Markov-hain Monte-Carlo methodthat was introdued by Geman and Geman [16℄in the on-text of image restoration. Tanner and Wong [49℄ intro-dued its use for data augmentation problems. The ideais to desribe a omplex probability distribution in termsof a Markov hain built with the simpler marginals of thedistribution. Suppose we have only three (possibly on-tinuous) variables desribed by the probability distribu-tion P (x1; x2; x3), Gibbs sampling will onsists of samplingx(i+1)1 aording to P (x1jx(i)2 ; x(i)3 ), then sampling x(i+1)2aording to P (x2jx(i+1)1 ; x(i)3 ), and then sampling x(i+1)3aording to P (x3jx(i+1)1 ; x(i+1)2 ). We denote the fat thatthis Markov hain onverges to the joint distribution bythe hain operator :P (x1; x2; x3) = P (x1jx2; x3)OP (x2jx1; x3)OP (x3jx1; x2):To prove that Gibbs sampling draws from the joint dis-tribution P (x1; : : : ; xd), we would have to show detailedbalane (whih is easy, see [13℄).F. The ollapsed Gibbs samplerFor motif �nding, we thus want to build a Gibbs samplerto sample from P (�; AjS). However, many variables arenow involved, whih leaves a great deal of leeway in howthe exat sampling is set up. In the basi Gibbs samplerwith three variables as an illustration, we haveP (x1; x2; x3) = P (x1jx2; x3)OP (x2jx1; x3)OP (x3jx1; x2):But in some ases, we maybe able to group variables to-gether, for example, we may haveP (x1; x2; x3) = P (x1jx2; x3)OP (x3; x2jx1)with P (x3; x2jx1) = P (x3jx2; x1)P (x2jx1). Or we maybeable to ollapse one of the variablesP (x1; x2; x3) = P (x3jx1; x2)(P (x1jx2)OP (x2jx1)):Liu [33℄ showed that the ollapsed Gibbs sampler onvergesfaster than the grouped Gibbs sampler, whih itself on-verges faster than the basi Gibbs sampler.For motif �nding, Liu then proposed to set up a ollapsedGibbs sampler asP (�; AjS) = P (�jA;S) NOi=1 P (aija1; : : : ; ai�1; ai+1; aN ; S)! ;where the hain diretly approximate P (AjS).



20G. The basi algorithm for Gibbs sampling for motif �nd-ingIn the previous subsetions, we have disussed the mainideas behind Gibbs sampling for motif �nding. The deriva-tion of the exat algorithm as was presented by Lawrene[29℄ and by Liu [35℄ is more tehnial; we do not overit here and refer to the publiation by Liu for the teh-nial details. Shortly said, the algorithm is basially theMarkov hain desribed above, but the omputation of theprobability distributions involves the use of multinomialprobability distributions (for the probability of the databased on the likelihood funtion presented in Setion V-C.1 and on the motif matrix and the bakground model)and of Dirihlet probability distributions (for the probabil-ity of the parameters of the motif matrix). The derivationof the ollapsed Gibbs sampler involves several propertiesof integrals of Dirihlet distributions and a number of ap-proximations is used to speed up the algorithm further. Tobe onrete, we present the resulting algorithm in Table V.H. Extended Gibbs sampling methodsSeveral groups proposed advaned methods to �ne-tunethe Gibbs sampling algorithm for motif �nding in DNAsequenes.A �rst version of the Gibbs sampling algorithm that wasespeially tuned towards �nding motif in DNA sequenesis AlignACE [44℄ and this version was later re�ned [24℄.This algorithm was �rst reported to be used for the anal-ysis of gene lusters. Several modi�ations were made inAlignACE with respet to the original Gibbs sampling al-gorithm. First, one motif at the time was retrieved andthe positions were masked instead of simultaneous multi-ple motif searhing. Seond, AlignACE was implementedwith a �xed single nuleotide bakground model based onbase frequeny in the sequene set. Also, both strandswere inluded in the searh. Finally, in the latest version,the maximum a priori likelihood sore (MAP) was usedto judge di�erent motifs. The MAP was approximated byN logR where N is the number of aligned sites and R isthe degree of overrepresentation.BioProspetor [36℄ also uses a Gibbs sampling strategyto searh for ommon motifs in the regulatory region ofoexpressed genes. In this implementation various exten-sions are proposed. First, BioProspetor uses zero to third-order Markov bakground models. The preditive updateformula is hanged in suh a way that the probability ofthe instane being generated by the bakground model isgiven by this higher-order bakground model:Pb(x) = P (bl)P (bl+1jbl)P (bl+2jbl+1bl): : : P (bl+W�1jbl+W�2bl+W�3bl+W�4):Seond, the ore sampling step was replaed by a thresholdsampler. This threshold sampling step was inorporatedto estimate the number of opies of a motif in a sequene.The program de�nes two threshold TL and TH . Instaneswith a sore Wx higher than TH will be automatially se-leted while there will be one motif sampled from those

motifs that have a sore between TL and TH. TH is setproportional to the produt of the average length of theinput sequenes and the motif width. TL is initialized at0 and linearly inrease till it reahes the value of TH=8.This threshold sampling step ensures faster onvergene.As another modi�ation, BioProspetor proposes two pos-sible alternative motif models. The �rst possibility is tosearh for palindromi motifs. The seond possibility is tosearh for a gapped version of the motif model, where themotif onsists of two bloks separated by a gap of variablelength. The gapped version searhes for two motifs at thesame time that our within a given range.Within the INCLUSive framework [53℄, we designed theMotif Sampler [51℄, [52℄ spei�ally to searh in sets of up-stream sequenes from groups of oexpressed genes. Suhgroups typially ome from a luster analysis of the ex-pression pro�les. Sine the results of lustering is knownto be subjet to noise, only a subset of the set oexpressedgenes will be atually oregulated and have one or moreopies of the binding. Therefore it is important to havean algorithm that an ope with this noise. Motif Sampleruses the framework of the probabilisti sequene model toestimate the number of opies of a motif in a sequene.For eah sequene in the data set the number of opies ofthe motif is estimated, whih is more aurate than earliermethods. Furthermore, we demonstrated [52℄ that the useof a higher-order bakground model build from an indepen-dent data set signi�antly improves the performane of theGibbs sampling algorithm. On our web site (see Table IV),we also provide preompiled bakground models for severalorganisms (A. thaliana, S. erevisiae, E. oli, H. pylori,C. elegans). To exemplify the improvements obtained byfurther re�nements of the Gibbs sampling strategy, we re-port here brie�y the use of higher-order bakground modelson a data set of oregulated genes from plants. The dataset onsists of 33 genes known to be regulated in part bythe G-box transription fator, whih is linked to the lightresponse of plants. Additionally, noisy sequenes not sus-peted to ontain an ative motif are added gradually. Fig-ure 11 presents the total number of times (out of 10 runs)that the algorithm �nds the orret motif for three di�er-ent bakground models when adding from 0 to 50 noisysequenes. The bakground models are order 0 and or-der 3 based on a referene set or on the data only. Abakground model of order 0 orresponds to the lassialbakground model of earlier versions of Gibbs sampling formotif �nding. We an observe that the performane of thehigher-order algorithms is more robust to the addition ofnoisy sequene than that of the zero-order algorithm. Theimproved robustness of the method thanks to the higher-order bakground model is disussed extensively in [51℄.Ann_spe [62℄ has a slightly di�erent approah to modelthe motif. The motif model is represented with a sparselyenoded pereptron with one proessing unit. The weightsof the pereptron resemble the position weight matrix.This model is based on the approximation of the total pro-tein binding energy by the sum of partial binding energiesat the individual nuleotides in the binding sites. The use



21TABLE VBasi Gibbs sampling algorithm for motif finding.INPUT: A set of sequenes S and the length W of the motif to searh.1. Compute the bakground model �0 from the nuleotide frequenies observed in S2. Initialize the alignment vetor A = faiji = 1; : : : ; Ng uniformly at random3. For eah sequene Sz; z = 1; : : : ; N ,(a) Create subsets ~S = fSiji 6= zg and ~A = faiji 6= zg(b) Compute �W from the segments indiated by ~A() Assign to eah possible alignment start (xij ; i 6= z; j = 1; : : : ; Li �W + 1) in Sz a weight W (xij ) givenby the probability that the orresponding segment is generated by the motif versus the bakground:W (xij) = P ((Sij ; : : : ; Si(j+W�1))j�W )P ((Sij ; : : : ; Si(j+W�1))j�0)= WYk=1 qSi(j+k�1)iqSi(j+k�1)0(d) For i 6= z, draw new alignment positions ai aording to the normalized probability distributionW (xij)=PLi�W+1k=1 W (xij)4. Repeat Step 3 until the Markov hain reahes onvergene (�xed number of iterations)OUTPUT: A motif matrix �W and an alignment A.

Fig. 11. Total number of times the G-box motif is found in 10repeated runs of the tests for three di�erent bakground models. Thedata set onsists of the 33 G-box sequenes and a �xed number ofadded noisy sequenes.of a pereptron is also justi�ed by the fat that it an beused to approximate posterior probability distributions. Agradient desent training method is used to �nd the pa-rameters of the pereptron. For the training set for thepereptron, positive examples are seleted using a Gibbssampling proedure. Negative examples an be either on-struted from random sequene or from genomi data. Toimprove the spei�ity of the motif model, a bakgroundmodel based on an independent data set is preferred.

Ann_spe was reently extended to searh for o-operatively ating transription binding fators byGuhaThakurta and Stormo [18℄. Co-Bind searhes for twomotifs simultaneously by ombining the weights that op-timize the objetive funtions of the two individual per-eptrons. The identi�ation of two motifs simultaneouslyimproved signi�antly the detetion of the true motifs om-pared to the lassial methods searhing for one motif atthe time.MCue et al. have used a Gibbs motif �nding algorithmfor phylogeneti footprinting [39℄. They also proposed amotif model that aounts for palindromi motifs. Theirmost important ontribution lies in the use of a position-spei� bakground model estimated with a Bayesian seg-mentation model [34℄. This model aounts for the varyingomposition of the DNA upstream of a gene.VII. INCLUSive: INtegrated CLustering,Upstream sequene retrieval, and motifSamplingAnalysis of miroarray experiment is not restrited toa single luster experiment. Inferring �biologial knowl-edge� from a miroarray analysis usually involves a om-plete analysis going from preproessing, sequential use ofdistint data preparation steps to the use of di�erent om-plex proedures that make preditions on the data. Clus-tering predits whether genes behave similarly while mo-tif �nding aims at retrieving the underlying mehanism ofthis similar behavior. These data-mining proedures makethus preditions about the same biologial system. Thesepreditions are in the best ase onsistent with eah other



22but they an also ontradit eah other. Combining thesemethods into a global approah therefore inreases theirrelevane for biologial analysis. Moreover, this integrationalso allows the optimal mathing of the di�erent proedures(suh as the quality requirements in adaptive quality-basedlustering that redue the noise level for Gibbs sampling formotif �nding). Furthermore, suh global approahes re-quire extensive integration at the information tehnologylevel. Indeed, as is often underestimated, the olletion ofdata from multiple data soures and transformation of theoutput of one algorithm to the input of the next algorithmare often tedious tasks.To make suh an integrated analysis of miroarraydata possible, we have developed and made publilyavailable our INCLUSive web tool (INtegrated CLuster-ing, Upstream sequene retrieval, and motif Sampling;http://www.esat.kuleuven.a.be/~dna/BioI). In the�rst step, starting preproessed measurements, the tool letsthe user perform adaptive quality-based lustering on themiroarray data. This lustering results in lists of genesthat are oexpressed. These genes are identi�ed by theirgene names and aession numbers (whih are referenes tothe databases where gene sequenes have been deposited).In the seond step, the tool ollets, based on the gene iden-ti�ers, upstream (promoter) sequenes for seleted lustersfrom several publily available data soures. In the thirdstep, the tool lets the user perform motif �nding (using ourMotif Sampler) on the DNA sequenes retrieved after lus-tering. As an output, the tool provides the di�erent motifsdisovered as motif matries and logos, it also provides theandidate binding sites identi�ed by the algorithm as wellas a series of sores assessing the quality of the andidatemotifs. Finally, it also represent the di�erent andidatemotifs graphially for easy visualization of the results.As an illustration of the results obtained by ombinedadaptive quality-based lustering and the Motif Sampler,we show the results of motif �nding on a miroarray ex-periment in plants. The data is a miroarray experimenton the response to mehanial wounding of the plant Ara-bidopsis Thaliana. The miroarray onsists of 150 genes re-lated to stress response in plants. The experiment onsistsof expression measurements for those 150 genes at 7 timepoints following wounding (after 30 min, 60 min, 90 min,3h, 6h , 9h, and 24 h). The expression data was lusteredusing adaptive quality-based lustering with a signi�anelevel of 95%. Four lusters where identi�ed that ontainedat least 5 genes and those were seleted for motif �nding.The Motif Sampler was used to searh for 6 motifs of length8bp and for 6 motifs of length 12bp. A bakground modelof order 3 was seleted as it gave the most promising re-sults. The analysis was repeated 10 times and only themotifs identi�ed in at least 5 runs were retained. Table VIpresents the motifs found. In the �rst olumn, the lusteris identi�ed together with the number of genes it ontains.The seond olumn gives the onsensus of the motif found.The onsensus of a motif is the dominant DNA pattern inthe motif desribed using a degenerate alphabet (e.g., r =A/G); apitals are for strong positions while lower letters

are for degenerate positions. The third olumn gives thenumber of times this motif was found in the 10 runs. Thefourth olumn gives mathing known motifs found in thePlantCARE database [31℄, if any. Finally, the last olumngives a short explanation of the mathing known motifs.VIII. ConlusionWe have presented algorithmi methods for the analy-sis of miroarray data for motif �nding. Miroarrays are apowerful tehnique to monitor the expression of thousandsof genes and they have beome a key tehniques for bi-ologists attempting to unravel the regulation mehanismsof genes in an organism. After reviewing the basis ofmiroarray tehnology, we introdued some onepts frommoleular biology to desribe how transription fators re-ognize binding sites to ontrol gene ativation. We thenintrodued the strategy of integrating lustering (to detetgroups of potentially oregulated genes) with motif �nding(to detet the DNA motifs that ontrol this oregulation).We presented several lustering tehniques (suh as hierar-hial lustering, K-means, self-organizing maps, quality-based lustering, and our adaptive quality-based luster-ing) and disussed their respetive advantages and short-omings. We also disussed the preproessing steps nees-sary to prepare miroarray data for lustering: normaliza-tion, nonlinear transformation, missing value replaement,�ltering, and resaling. We also presented several strate-gies to validate the results of lustering biologially as wellas statistially. Turning to motif �nding, we desribed thetwo main lasses of methods for motif �nding: word ount-ing and probabilisti sequene models. We foused on thepartiular tehnique of Gibbs sampling for motif �nding.After reviewing the basi ideas underlying this Markov-hain Monte-Carlo method, we disussed several extensionsthat improve the e�etiveness of this method in pratie.We introdued our Motif Sampler, whih in partiular in-ludes the use of higher-order bakground models that in-rease the robustness of Gibbs sampling for motif �nding.Finally, we brie�y presented our integrated web tool IN-CLUSive that allows the easy analysis of miroarray datafor motif �nding. Furthermore, we illustrated the di�erentsteps of this integrated data analysis at the hand of severalpratial examples.As a onlusion, we emphasize that a major endeavor ofbioinformatis is to develop methodologies that integratemultiple types of data (here expression data together withsequene data) to obtain robust and biologially relevantresults in an e�ient and user-friendly manner. Only suhpowerful tools an deliver the neessary support for 21st-entury moleular biology.Referenes[1℄ U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra,D. Mak, and A.J. Levine, Broad patterns of gene expression re-vealed by lustering analysis of tumor and normal olon tissuesprobed by oligonuleotide arrays, Pro. Natl. Aad. Si. USA 96(1999), 6745�6750.[2℄ F. Azuaje, A luster validity framework for genome expressiondata, Bioinformatis 18 (2002), 319�320.[3℄ T. L. Bailey and C. Elkan, Unsupervised learning of multiple



23TABLE VIResults of the motif searh in four lusters from a miroarray experiment on mehanial wounding in A. thaliana for thethird-order bakground model.Cluster Consensus Runs PlantCARE Desriptor1 TAArTAAGTCAC 7/10 TGAGTCA tissue spei� GCN4-motif(11 seq.) CGTCA MeJA-responsive elementATTCAAATTT 8/10 ATACAAAT element assoiated to GCN4-motifCTTCTTCGATCT 5/10 TTCGACC eliitor responsive element2 TTGACyCGy 5/10 TGACG MeJa responsive element(6 seq.) (T)TGAC(C) Box-W1, eliitor responsive elementmACGTCACCT 7/10 CGTCA MeJA responsive elementACGT Abissi aid response element3 wATATATATmTT 5/10 TATATA TATA-box like element(5 seq.) TCTwCnTC 9/10 TCTCCCT TCCC-motif, light response elementATAAATAkGCnT 7/10 - -4 yTGACCGTCCsA 9/10 CCGTCC meristem spei� ativation of H4 gene(5 seq.) CCGTCC A-box, light or eliitor responsive elementTGACG MeJA responsive elementCGTCA MeJA responsive elementCACGTGG 5/10 CACGTG G-box light responsive elementACGT Abissi aid response elementGCCTymTT 8/10 - -AGAATCAAT 6/10 - -motifs in biopolymers using expetation maximization, MahineLearning 21 (1995), 51�80.[4℄ A. Ben-Dor, N. Friedman, and Z. Yakhini, Class disovery ingene expression data, Proeedings Reomb 2001, 2001, pp. 31�38.[5℄ A. Ben-Dor, R. Shamir, and Z. Yakhini, Clustering gene expres-sion patterns, J. Comput. Biol. 6 (1999), 281�297.[6℄ M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix,M. Radmaher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas,E. Dougherty, E. Wang, F. Marinola, C. Gooden, J. Lueders,A. Glatfelter, P. Pollok, J. Carpten, E. Gillanders, D. Leja,K. Dietrih, C. Beaudry, M. Berens, D. Alberts, and V. Sondak,Moleular lassi�ation of utaneous malignant melanoma bygene expression pro�ling, Nature 406 (2000), 536�540.[7℄ P. Buher, Regulatory elements and expression pro�les, Curr.Opin. Strut. Biol. 9 (1999), 400�407.[8℄ L.R. Cardon and G.D. Stormo, Expetation maximization foridentifying protein-binding sites with variable lengths from un-aligned DNA fragments, J. Mol. Biol. 223 (1992), 159�170.[9℄ R.J. Cho, M.J. Campbell, E. A. Winzeler, L. Steinmetz, A. Con-way, L. Wodika, T. G. Wolfsberg, A. E. Gabrielian, D. Lands-man, D. J. Lokhart, and R. W. Davis, A genome-wide tran-sriptional analysis of the mitoti ell yle, Mol. Cell 2 (1998),65�73.[10℄ F. De Smet, J. Mathys, K. Marhal, G. Thijs, B. De Moor, andY. Moreau, Adaptive quality-based lustering of gene expressionpro�les, Bioinformatis (2002), in press.[11℄ A. D. Duane, S. amd Kennedy, B. J. Pendleton, and D. Roweth,Hybrid Monte Carlo, Physis Letters B 195 (1990), 216�222.[12℄ D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent,Expression pro�ling using DNA miroarrays, Nat. Genet. 21(1999), no. 1 Suppl., 10�14.[13℄ R. Durbin, S. Eddy, A. Krogh, and G. Mithison, Biologialsequene analysis: probabilisti models of proteins and nuleiaids, Cambridge University Press, 1998.[14℄ M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein, Clus-ter analysis and display of genome-wide expression patterns,Pro. Natl. Aad. Si. USA 95 (1998), 14863�14868.[15℄ C. Fraley and E. Raftery, MCLUST: Software for model-basedluster analysis, Journal of Classi�ation 16 (1999), 297�306.[16℄ D. Geman and S. Geman, Stohasti relaxation, Gibbs distribu-tion and Bayesian restoration of images, IEEE Trans. PAMI 6(1984), no. 6, 721�741.

[17℄ D. Ghosh and A.M. Chinnaiyan, Mixture modelling of gene ex-pression data from miroarray experiments, Bioinformatis 18(2002), 275�286.[18℄ D. GuhaThakurta and G.D. Stormo, Identifying target sites forooperatively binding fators, Bioinformatis 17 (2001), 608�621.[19℄ T. Hastie, R. Tibshirani, M.B. Eisen, A. Alizadeh, R. Levy,L. Staudt, W.C. Chan, D. Botstein, and P. Brown, `gene shav-ing' as a method for identifying distint sets of genes with simi-lar expression patterns, Genome Biology (2000), researh0003.1-0003.21.[20℄ J. Herrero, A. Valenia, and J. Dopazo, A hierarhial unsu-pervised growing neural network for lustering gene expressionpatterns, Bioinformatis 17 (2001), 126�136.[21℄ G.Z. Hertz, G.W. Hartzell, and G.D. Stormo, Identi�ation ofonsensus patterns in unaligned DNA sequenes known to befuntionally related, Comput. Appl. Biosi. 6 (1990), 81�92.[22℄ G.Z. Hertz and Gary D. Stormo, Identifying DNA and proteinpatterns with statistially signi�ant alignments of multiple se-quenes, Bioinformatis 15 (1999), no. 7/8, 563�577.[23℄ L.J. Heyer, S. Kruglyak, and S. Yooseph, Exploring expressiondata: Identi�ation and analysis of oexpressed genes, GenomeRes. 9 (1999), 1106�1115.[24℄ J.D. Hughes, P.W. Estep, S. Tavazoie, and G.M. Churh, Com-putational identi�ation of is-regulatory elements assoiatedwith groups of funtionally related genes in Saharomyes ere-visiae, J. Mol. Biol. 296 (2000), 1205�1214.[25℄ Quakenbush J., Computational analysis of miroarray data,Nat. Rev. Genet 2 (2001), 418�427.[26℄ L. Kaufman and P.J. Rousseeuw, Finding groups in data: anintrodution to luster analysis, Wiley, New York, 1990.[27℄ M.K. Kerr and G.A. Churhill, Bootstrap luster analysis: As-sessing the reliability of onlusions from miroarray experi-ments, Pro. Natl. Aad. Si. USA 98 (2001), 8961�8965.[28℄ T. Kohonen, Self-organizing maps, Springer-Verlag, Berlin,1997.[29℄ C. E. Lawrene, S. F. Altshul, M. S. Boguski, J. S. Liu, A. F.Neuwald, and J. C. Wootton, Deteting subtle sequene signals:a Gibbs sampling strategy for multiple alignment, Siene 262(1993), 208�214.[30℄ C.E. Lawrene and A.A. Reilly, An expetation maximization(EM) algorithm for the identi�ation and haraterization ofommon sites in unaligned biopolymer sequenes, Proteins 7(1990), 41�51.



24[31℄ M. Lesot, P. Déhais, G. Thijs, K. Marhal, Y. Moreau, Y. Vande Peer, P. Rouzé, and S. Rombauts, PlantCARE, a databaseof plant is-ating regulatory elements and a portal to tools forin silio analysis of promoter sequenes, Nulei Aids Res. 30(2002), 325�327.[32℄ R.J. Lipshutz, S.P.A. Fodor, T.R. Gingeras, and D.J. Lok-heart, High density syntheti oligonuleotide arrays, NatureGenet Suppl. 21 (1999), 20�24.[33℄ J.S. Liu, The ollapsed Gibbs sampler in Bayesian omputationswith appliations to a gene regulation problem, J. Am. Stat. As-so. 89 (1994), no. 427, 958�966.[34℄ J.S. Liu and C.E. Lawrene, Bayesian inferene on biopolymermodels, Bioinformatis 15 (1999), 38�52.[35℄ J.S. Liu, A.F. Neuwald, and C.E. Lawrene, Bayesian models formultiple loal sequene alignment and Gibbs sampling strategies,J. Am. Stat. Asso. 90 (1995), no. 432, 1156�1170.[36℄ X. Liu, D.L. Brutlag, and J.S. Liu, BioProspetor: disover-ing onserved DNA motifs in upstream regulatory regions ofo-expressed genes, Pro. Pai� Symposium on Bioomputing,vol. 6, 2001, pp. 127�138.[37℄ A.V. Lukashin and R. Fuhs, Analysis of temporal gene expres-sion pro�les: lustering by simulated annealing and determiningthe optimal number of lusters, Bioinformatis 17 (2001), 405�414.[38℄ L. Marsan and M.-F. Sagot, Algorithms for extrating struturedmotifs using a su�x tree with appliation to promoter and reg-ulatory site onsensus identi�ation, J. Comp. Biol. 7 (2000),345�360.[39℄ L.A. MCue, W. Thompson, C.S. Carmak, M.P. Ryan, J.S. Liu,V. Derbyshire, and C.E. Lawrene, Phylogeneti footprinting oftransription fator binding sites in proteobaterial genomes,Nulei Aids Res. 29 (2001), 774�782.[40℄ H.W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase,A. Kaps, K. Lemke, G. Mannhaupt, F. Pfei�er, C. Shuller,S. Stoker, and B. Weil, MIPS: a database for genomes andprotein sequenes, Nulei Aids Res. 28 (2000), 37�40.[41℄ R. M. Neal, Bayesian learning for neural networks, LetureNotes in Statistis, no. 118, Springer, New York, 1996.[42℄ P. Niodème, B. Salvy, and Ph. Flajolet, Motif statistis, Theor.Comp. Si. (2002), in press.[43℄ U. Ohler and H. Niemann, Identi�ation and analysis of eukary-oti promoters: reent omputational approahes, Trends Genet.17 (2001), no. 2, 56�60.[44℄ F.P. Roth, J.D. Hughes, P.W. Estep, and G.M. Churh, FindingDNA regulatory motifs within unaligned nonoding sequeneslustered by whole genome mRNA quantitation, Nature Bioteh.16 (1998), 939�945.[45℄ G. Shwarz, Estimating the dimension of a model, Ann. Stat. 6(1978), 461�464.[46℄ G. Sherlok, Analysis of large-sale gene expression data, Curr.Opin. Immunol. 12 (2000), 201�205.[47℄ S. Sinha and M. Tompa, A statistial method for �nding tran-sription fator binding sites, Pro. 8th Intl. Conf. IntelligentSystems for Moleular Biology (San Diego, USA), vol. 8, 2000,pp. 37�45.[48℄ P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan,E. Dmitrovsky, E.S. Lander, and T. R. Golub, Interpreting pat-terns of gene expression with self-organizing maps: Methods andappliation to hematopoieti di�erentiation, Pro. Natl. Aad.Si. USA 96 (1999), 2907�2912.[49℄ Martin A. Tanner and Wing Hung Wong, The alulation of pos-terior distributions by data augmentation. with disussion andwith a reply by the authors, Journal of the Amerian StatistialAssoiation 82 (1987), no. 398, 528�550. MR 88h:62050[50℄ S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, and G.M.Churh, Systemati determination of geneti network arhite-ture, Nature Genet. 22 (1999), no. 7, 281�285.[51℄ G. Thijs, M. Lesot, K. Marhal, S. Rombauts, B. De Moor,P. Rouzé, and Y. Moreau, A higher-order bakground model im-proves the detetion of promoter regulatory elements by Gibbssampling, Bioinformatis 17 (2001), no. 12, 1113�1122.[52℄ G. Thijs, K. Marhal, M. Lesot, S. Rombauts, B. De Moor,P. Rouzé, and Y. Moreau, A Gibbs sampling meyhod to detetover-represented motifs in the upstream regions of o-expressedgenes, J. Comput. Biol. 9 (2002), no. 2, 447�464.[53℄ G. Thijs, Y. Moreau, F. De Smet, J. Mathys, M. Lesot, S. Rom-bauts, P. Rouzé, B. De Moor, and K. Marhal, INCLUSive:

INtegrated CLustering, Upstream sequene retrieval and motifSampling, Bioinformatis 18 (2002), no. 2, 331�332.[54℄ M. Tompa, An exat method for �nding short motifs in se-quenes, with appliation to the ribosome binding site problem,Pro. 7th Intl. Conf. Intelligent Systems for Moleular Biology(Heidelberg, Germany), vol. 7, August 1999, pp. 262�271.[55℄ J.T. Tou and R.C. Gonzalez, Pattern lassi�ation by distanefuntions, Pattern reognition priniples, Addison-Wesley, Read-ing, MA, 1979, pp. 75�109.[56℄ S. J. Triezenberg, Struture and funtion of transriptional a-tivation domains, Curr. Opin. Genet. Dev. 5 (1995), no. 2, 190�196.[57℄ O. Troyanskaya, M. Cantor, G. Sherlok, P. Brown, T. Hastie,R. Tibshirani, D. Botstein, and R.B. Altman, Missing valueestimation methods for DNA miroarrays, Bioinformatis 17(2001), 520�525.[58℄ J. van Helden, B. André, and L. Collado-Vides, Extrating reg-ulatory sites from upstream region of yeast genes by omputa-tional analysis of oligonuleotide frequenies, J. Mol. Biol. 281(1998), 827�842.[59℄ J. van Helden, A.F. Rios, and J. Collado-Vides, Disovering reg-ulatory elements in non-oding sequenes by analysis of spaeddyads, Nulei Aids Res. 28 (2000), no. 8, 1808�1818.[60℄ A. Vanet, L. Marsan, A. Labigne, and M.F. Sagot, Inferringregulatory elements from a whole genome. an analysis of he-liobater pylori sigma80 family of promoter signals., J. Mol.Biol. 297 (2000), no. 2, 335�353.[61℄ T. Werner, Models for predition and reognition of eukaryotipromoters, Mamm. Genome 10 (1999), 71�80.[62℄ C.T. Workman and G.D. Stormo, Ann-spe: a method for dis-overing transription binding sites with improved spei�ity,Pro. Pai� Symposium on Bioomputing (Honolulu, Hawai),vol. 5, 2000, pp. 464�475.[63℄ K.Y. Yeung, C. Fraley, A. Murua, A.E. Raftery, and W.L. Ruzzo,Model-based lustering and data transformations for gene ex-pression data, Bioinformatis 17 (2001), 977�987.[64℄ K.Y. Yeung, D.R. Haynor, and W.L. Ruzzo, Validating luster-ing for gene expression data, Bioinformatis 17 (2001), 309�318.[65℄ K.Y. Yeung and W.L. Ruzzo, Prinipal omponent analysis forlustering gene expression data, Bioinformatis 17 (2001), 763�774.[66℄ J. Zhu and M.Q. Zhang, Cluster, funtion and promoter: anal-ysis of yeast expression array, Pro. Pai� Symposium on Bio-omputing, vol. 5, 2000, pp. 467�486.


