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2D-DIGE experiments are a high-throughput technique for measuring protein abundances based on
gel separation. Traditionally three samples are multiplexed per gel: two biological test samples and a
third internal standard sample consisting of a pool of all test samples. We demonstrate that the use of
an internal standard helps to account for technical variation caused by spatial intensity biases that
exist in the gels and propose a novel data-preprocessing technique, a spatial intensity bias removal
(SIBR), which can approximate these biases using only the data of biological replicates loaded on the
gel. Using this technique, we show that by replacing the internal standard with additional biological
replicates, a significant increase in statistical power can be achieved compared to traditional 2D-DIGE
designs. This boost in statistical power can be used to reduce the false positive rate for identifying
differential protein abundances without compromising sensitivity, or to improve sensitivity without
compromising false positive rate. A software implementation of SIBR can be downloaded at http://
ibiza.biw.kuleuven.be/SIBR.
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Introduction

High-throughput measuring of differences in protein abun-
dance is customarily done by either liquid chromatography or
gel-based techniques. Both categories are complementary in
getting a global picture of protein expression1–4 as they differ
in the proteins that can be separated. Two-dimensional dif-
ference gel electrophoresis (2D-DIGE)5 can be considered the
gold standard of gel-based techniques. Just as with classical
2D gels, proteins are separated in two dimensions, by isoelectric
point (pI) and by molecular weight.6 In contrast to classical
2D gels, however, DIGE makes use of multiplexing samples
from different conditions by labeling them with distinct cyanine
dyes. Usually test samples are labeled with Cy5 and Cy3, while
Cy2 is reserved for a third sample consisting of a pool of all
test samples. This pool serves as an internal standard, used to
normalize for experimental differences between gels, and in
doing so to reduce technical variance, and also serves to

facilitate spot matching across gel images.7,8 The downside of
using an internal standard is that one-third of the loaded
samples are of no biological interest to the researcher. Never-
theless, once the spots have been quantified and matched, the
internal standard is considered to be an important means to
remove systematic biases in the data. These biases confound
the true biological responses of interest and are the direct
consequence of certain experimental factors such as the
fluorescent dye used or the location of the spot on the gel. The
microarray community has already developed a multitude of
methods, which are directly implementable in DIGE experi-
ments.9 Most of these methods focus on the removal of
intensity-dependent and/or spatial dye-effects,10,11 but little
research has been done on the spatial bias caused by the
inherent heterogeneity of the gels. In this paper, we show that
this kind of spatial bias exists and is generally handled by
normalizing against the internal standard that is traditionally
incorporated in the experiment design. We further propose a
different way of normalizing for these spatial effects using only
sample measurements, a normalization strategy called spatial
intensity bias removal (SIBR). SIBR does not require an internal
standard to be incorporated in the design, so that the Cy2
channel can be allocated for additional biological replicates
(Figure 1). We show that such an alternative experimental
design, in combination with SIBR normalization to account for
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spatial intensity bias, can achieve a higher statistical power for
identifying differential expression using the same number of
gels.

Material and Methods

2D-DIGE Data Sets. To evaluate and quantify spatial inten-
sity biases we used the gel images of 6 independently per-
formed experiments using the standard 2D-DIGE design as
proposed by Alban et al. (2003): 3 on Mus musculus12,13

(respectively 5, 8, and 8 gels), 1 on Felis catus (23 gels), 1 on
Apis mellifera (15 gels), and 1 on Salmonella typhimurium14

(18 gels). These experiments were conducted by four different
researchers from two different laboratories. An additional
experiment (Mus musculus, 8 gels) was set up to show that
applying a SIBR-based normalization scheme on an experi-
mental design where the internal standard was omitted in favor
of additional biological replicates leads to an increase in power
for detecting differential expression when compared to the
traditional design. Four gels of this experiment used the
traditional design (with internal standard) and 4 gels used
the alternative design (without internal standard). This experi-
ment is referred to in the text as the validation experiment.
Details regarding all animals and sample preparation can be
found in Supplementary File 1 (Supporting Information).

After electrophoresis, gel images were acquired using an
Ettan DIGE Imager and/or a Typhoon 9400 scanner (both from
GE Healthcare) following the standard protocols. The Typhoon
9400 (laser scanner) can achieve a larger dynamic range due
to the adaptability of the gain on the photomultiplier tube. The

Ettan DIGE (CCD scanner) on the other hand is more versatile
with respect to illumination wavelength and can accommodate
a broader range of dyes.15

Image Analysis. The resulting three 16-bit images per gel
(one for each channel) were subsequently analyzed to match
spots across gel images (a necessary step as gel specific
separation patterns are subject to geometrical distortions16) and
to obtain a per-spot quantification measure of protein abun-
dance. Several studies17–20 already demonstrated that the end
results of proteomics studies can be affected by the used
analysis strategy. To obtain fully matched spots, necessary for
the application of the new data processing method, we chose
a “warp first” workflow and used the Delta2D 3.6 software
package (DECODON). Delta2D first aligns the gel images (i.e.,
defining warp transformation vector) and fuses them into a
synthetic “master” image.21 This fused image contains all the
spots present on all initial gels. Spot detection is subsequently
performed on the fusion image and detected spots are trans-
ferred back to the original images using the identified warp
transformation vectors. The advantage of this “warp first”
strategy detecting spots on the fused image compared or a
“spot detection first” workflow detecting spots directly on the
original images (e.g., DeCyder of GE Healthcare) is that spots
are 100% matched and no missing values exist. Indeed, if a
given biological sample does not contain a particular protein,
the spot is still quantified using the background signal of the
corresponding spot position.22 Images were warped using
the in-gel standard warping strategy of Delta2D. Analysis of
the images for the gels containing the pooled standard (n ) 4)

Figure 1. Alternative experimental design with an applied normalization. The approach is illustrated for a simple case where two distinct
biological conditions (represented by the purple and orange mice) are compared. The traditional design uses the Cy2 channels to
allocate an internal standard (represented by the circles encompassing a pool of purple and orange mice) and ratios of sample over
standard compensate for spatial intensity biases inherent to the gel (top panel). The alternative design makes no use of an internal
standard and relies on a spatial intensity bias removal (SIBR) normalization to remove spatial effects inherent to the gel (bottom
panel). In this paper, we show that the combination of an alternative experimental design and SIBR normalization leads to a higher
statistical power for identifying differential expression using the same number of gels.
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was performed independently from the images containing no
such standards (n ) 4). Automatically generated image trans-
formation vectors were verified and additional vectors were
added manually where needed. Fusion images for each treat-
ment group were generated using the “average” mode to
average out noise. These fusion images were subsequently
fused using the “union” mode so all spots of the original images
were present in the global fusion image. Spot detection was
based on the default generated parameters within Delta2D and
was manually corrected if spots were missed by the algorithm
or to remove unwanted artifacts. Quantified spot data were
then further analyzed in MATLAB R2009a (The Mathworks).

Data Preprocessing. Values that were originally subtracted
from the measured volumes by Delta2D were added again to
the unnormalized intensity volumes to obtain the original, full
spot volumes (i.e., no background correction was performed).
This was done because background correction can introduce
a bias,20 which was clearly seen in our data sets (Supplementary
File 2, Supporting Information). The data was log-transformed
to stabilize multiplicative error variance.23,24

To counter dye biases and the loading of unequal sample
quantities, all samples were normalized against an artificial
reference with a nonlinear intensity-dependent rescaling
(NLIDR). This is different from a linear rescaling as done by
common software packages, such as, for example, DeCyder.
In that case, the log-ratio distributions of the samples (Cy3 and
Cy5) over the internal standard (Cy2) are rescaled with a
constant factor (i.e., linear). Such a linear rescaling assumes
that the dye responses differ by a constant factor and that the
expression of the majority of the proteins remains unchanged.
But as cyanine dyes have intensity-dependent (nonlinear)
responses, normalization techniques such as nonlinear local
regression or moving average-based methods yield better
results as they remove intensity dependent bias due to the
differential labeling rather than a biological difference. This is
especially the case when working with the Cy2 dye, which
shows a weaker response compared to the Cy3 and the Cy5
dyes.25 NLIDR was performed as follows: an artificial reference
was generated for each spot using the median over all samples.
To counter intensity-dependent systematic variation, every
sample was rescaled in a nonlinear way with respect to the
artificial reference: M ) log((xi,c)/(refi)) with xi,c being the
intensity volume for the ith spot and cth treatment condition
and refi ) median(xi) the median over all measurements of that
spot, was fitted against A ) log(refi). This was done with the
smooth function in MATLAB using a robust loess nonlinear
local regression algorithm. A span that comprised 60% of the
spots was chosen as to not overfit the data. Corrected values
(x′i,c) were obtained by adding the artificial reference values to
the residuals of the fit (x̂i,c): log (x′i,c) ) log(x̂i,c) + log(refi). When
appropriate, correction with an internal standard was calcu-
lated as follows: log(ri,c) ) log((x′i,c)/(x′i,s - jx′i,s)), ri,c being the
standard-corrected intensity volume for the ith spot and the
cth treatment condition, x′i,cbeing the NLIDR intensity volume
for that spot, x′i,s the normalized volume of the standard for
that spot on the same gel, jx′i,s the mean of the NLIDR volumes
over all measurements of the internal standard for spot i. This
correction with the internal standard is analogous to the
common-practice normalization as done by popular software
packages such as DeCyder. In that case the log-ratios of Cy3/
Cy2 and Cy5/Cy2 are linearly rescaled with a constant factor
to have a mean of zero, a procedure sometimes referred to as
“ratio metric normalization”. The only difference with our

approach is that, instead of a linear rescaling, we use a
nonlinear correction method to account for nonlinear intensity-
dependent dye differences, which in theory can only improve
the quality of the results (Supplementary File 3, Supporting
Information). To verify that NLIDR was indeed performing
equally well or better than a linear rescaling approach we
compared the difference in variance within replicates. Although
we could not see a very pronounced improvement by using a
nonlinear model we could also see no signs of decline of
performance in any of our data sets (see Figure 3.2 in
Supplementary File 3, Supporting Information). We included
the NLIDR approach in our software package as intensity
dependent dye effects might be more pronounced in other data
sets.

Spatial Intensity Bias Removal. To account for regional
trends, caused by heterogeneities in the gels, we developed a
spatial intensity bias removal (SIBR) procedure. For every
intensity volume measurement of each biological replicate the
following difference log(d′i,c) ) log((x′i,c)/(jxi,c)) was calculated,
x′i,c being the normalized volume for the ith spot of the cth
treatment condition and jx′i,c being the mean of the same values
over all samples for the same treatment condition. This
difference was then fitted using a bivariate robust local regres-
sion function as implemented in the curve fitting toolbox of
MATLAB. Robustness against outliers was achieved using the
bisquare weight method. For the predictor variables, the x- and
y-coordinates were used as exported from Delta2D. The span,
which controls the degree of smoothing, was set to 10% of all
data points. A large enough span assures that a minimal
amount of spot-dependent biological variation is removed and
that mostly biologically independent spots are considered.
Randomizations were made by randomly assigning existing
coordinate pairs to normalized intensity volumes and running
the algorithm with the same parameters. In this way, no
changes were made to the local distribution of spots on the
gel.

Statistical Power. To quantify the acquired statistical power,
the standard deviation per condition for each spot was
calculated after normalization. Then the 75% percentile of these
standard deviations was taken as a global measure of variance
present in the replicates after normalization. Using this vari-
ance, the statistical power was calculated using the SCal4Poolings
tool available online.26,27 We calculated the power for a 2-fold
change with R ) 0.001 and the appropriate number of
replicates. A 1.5-fold change with R ) 0.01 was also calculated.

Results

Gels Exhibit Spatial Intensity Biases. To gain insight in the
spatial nature of intensity variation within a gel, we first
evaluated internal standard measurements (Cy2 channel).
These can be viewed as technical replicates and should only
differ from each other because of experimental sources of
variation.

We first removed systematic variation caused by differences
in dye response or unequal loading on the gel by means of a
nonlinear intensity dependent rescaling (NLIDR; see Materials
and Methods for details). This NLIDR is based on a loess
normalization technique,28 which is commonly used in mi-
croarray experiments and has been used before in DIGE data
analysis.11 After this normalization step, taking into account
dye-related sources of variation, considerable differences in the
measurements of the internal standard can still be observed.
Although this remaining variation can be caused by random
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measurement errors purely dependent on the spot that is being
observed, the presence of a systematic trend due to an
unaccounted experimental factor cannot be excluded. To find
out whether this remaining variation is due to random mea-
surement errors or whether a remaining systematic trend was
still present in the data, we applied a spatial intensity bias
removal (SIBR) procedure to the data.

The SIBR method fits a smoothed surface using a robust two-
dimensional nonlinear regression algorithm on the differences
between the measurements on a given gel for the internal
standard with the mean values over all standard measurements
for each spot. The resulting SIBR fits on the measurements of
the internal standard show to what extent the NLIDR intensity
volumes in a given region of the gel deviate from their
respective means. If for some reason a region of the gel exhibits
consistently higher or lower values, the fitted surface will
deviate from 0. The SIBR planes clearly illustrate that such
spatial trends are present in the internal standard data. The
lack of persistent patterns that can be distinguished in the
spatial trends across the different gels suggests that these trends
are related to heterogeneities in the gel matrix, rather than
random measurement errors.

To ensure that these results indeed reflect real spatial
patterns, we compared fits obtained on the original internal
standard data with those obtained on randomly generated data
sets (obtained by permuting the xy-coordinates of the spot
locations in the original data set 10 000 times). The magnitude
of the fits obtained by using SIBR on the permutations is
represented in Figure 2. By evaluating the distribution of the
standard deviations of the fitted surfaces for the permutations,
we estimate the chance that the original data belongs to the
same distribution. We can clearly see that the standard devia-
tions of the fits obtained for the original data are substantially
larger than the ones obtained for the permutated data (data
not shown), in fact all standard deviations of the original data
sets show a p-value smaller than 10-16 (calculated in MATLAB
2009a and reported as 0, that is, below its computational
precision). This confirms that the trends seen here are not
caused by random chance, but can be attributed to the
existence of gel-dependent spatial trends that manifest them-
selves at least in internal standard measurements.

Assuming that these spatial trends are not only present in
the Cy2 channel, but also in the Cy3 and Cy5 channels, that is,
the biological sample measurements, we applied the SIBR
algorithm on the measurements of the biological replicates. We
assume that neighboring spots of a biological sample have
equal chance of having lower or higher values compared to
their mean, so that if no spatial bias exists these differences
are averaged out due to the symmetrical distribution compared
to their respective means. Under this assumption, neighboring
spots showing consistently lower or higher values compared
to their mean then point toward a spatial trend. Taking into
account additional biological variance, we defined the size of
the gel regions sufficiently large so that mostly biologically
independent spots were considered within a region. By doing
this we minimize the possible bias that could arise by incor-
porating spot chains into our calculation of the spatial effects.
Spot chains are mostly made up of isoforms of a protein species
and are thus spots likely to be correlated in protein abundance.
This correlation between spots in a region would lead to a false
estimate of a spatial effect. By looking at a large mass of data
points we dilute such correlations in the estimate of the spatial
effect (for detailed representations, see Supplementary File 4,
Supporting Information).

If the spatial trends are inherent to the gel we can also safely
assume that the same trends should occur on the three
channels. Using multiple channels further averages out the
biological differences and should result in a clearer picture of
the spatial trends caused by technical variation in the gels.

To confirm that there was a spatial bias in the measurements
of the biological samples, we compared the fits obtained by
using only the biological measurements (2 measurements per
spot from the Cy3 and Cy5 channel in the normal data sets, 3
measurements from the Cy3, Cy5 and Cy2 channel in the
validation experiment) to 10 000 permutations using permu-
tated coordinates. As with the internal standard measurements,
the original data sets resulted in spatial trends that were
nowhere near the ones observed in the randomized data sets
(Table 1).

Internal Standard Is Not Necessary to Control Spatial
Intensity Bias. To evaluate whether these spatial trends
reflected gel-specific effects that were observed in all channels
of a gel we tested whether the special biases observed in the
channels containing biological measurements were correlated
to those observed in the channel with the internal standard
(Table 2). Results showed a relatively high degree of correlation,
confirming that the spatial trends are indeed observable in all
channels, and that they can be equally well approximated by
the measurements obtained from the technical replicates of
the internal standard than by those obtained from biological
replicates.

As normalization procedures are meant to remove consistent
sources of variation from the data, we assessed the efficiency
of our normalization schemes by evaluating to what extent
consistency among replicates increased compared to the raw
unprocessed data. The quality of these improvements was
measured by the differences in standard deviations (σraw -
σnormalized) across replicates within treatment conditions for
several independent studies (see Material and Methods). Figure
3 shows some of these results for only NLIDR normalization
(representing a strategy were only dye discrepancies were
normalized for, ignoring any spatial intensity bias), NLIDR +
SIBR (normalization for both dye discrepancies and spatial
intensity bias, but without using any of the internal standard

Figure 2. Confirming the existence of spatial intensity trends. Left
hand plots represent the gel images, right-hand plots represent
the spatial intensity biases as estimated by the spatial intensity
bias removal (SIBR). By permutating spot coordinates of actual
gel data multiple times and evaluating the magnitude of esti-
mated spatial trends in these randomized data, we rule out the
possibility that the SIBR estimated spatial intensity bias observed
in the actual data is due to random sampling.
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measurements) and NLIDR log-ratios (normalization for both
dye discrepancies and spatial intensity bias, the latter by use
of the internal standard; this is analogue to classical ratio metric
normalization as done in popular software packages such as
DeCyder). In this figure, values smaller than zero represent
replicate measurements that showed lower error variance for
the normalized than the raw data, whereas values bigger than
zero represent an improvement of normalized compared to raw
data.

Results on all data sets confirmed the reproducibility of the
approach. All normalization schemes improved consistency
among replicates compared to the consistency observed for the
raw data and normalization with the internal standard showed
the most prominent improvement (e.g., the Salmonella data
set). Our results indicate that differences that are measured
between the internal standards are most optimal to estimate
gel-specific trends. Internal standards function as a control on
a spot-specific level, whereas the SIBR algorithm estimates
spatial bias for a whole region and thus has a lower resolution
of the real underlying spatial deformities. Some data sets (e.g.,
Mus musculus and Felis catus) show little difference in between
the normalization with the internal standard (NLIDR normal-
ized log-ratios) and the SIBR normalized volumes (NLIDR +
SIBR). This indicates that in these data sets the internal
standard does not seem to be handling additional sources of
technical variance aside from the spatial effects that can also

be successfully corrected for with SIBR, resulting in a similar
degree of improvement for both techniques.

Increased Statistical Power by SIBR and Internal Standard
Exclusion. So while the proposed SIBR normalization does not
outperform the use of an internal standard for normalizing
spatial intensity biases, it does sport a different important
advantage. As SIBR negates the requirement of including
internal standard measurements, additional biological samples
can be profiled with the same number of gels. More replicates
yield an increased statistical power for the detection of dif-
ferential expression. To be able to detect a differential effect
of a certain size, sufficient statistical power needs to be
obtained. The acquired power is dependent on the effect size,
the statistical significance level (the degree of false positives
one expects to observe), the total (biological and technical)
variance of the experiment, and the number of (biological and
technical) replicates of each observed sample. A higher power
means that smaller effects in differential protein abundances
can be determined with the same degree of false negatives or
that the same effect size can be observed with a higher
confidence. If insufficient power is acquired, biologically
relevant changes in protein expression might be missed. When
choosing whether to use biological or technical replicates in
the experimental design, the general consensus goes to biologi-
cal replicates, except in cases where the technical variation is
exceptionally high.29–31 Reducing the biological variance can
also be achieved by pooling the samples32 but a large number
of specimens are needed to observe a substantial increase in
power.

In this section we investigate whether the increase in
statistical power associated with additional biological replicates,
possible with the same number of gels, justifies the omission
of the internal standard. To this end, we compare results from
two experiments, both consisting of 4 gels and both comparing
two biological conditions (see Supplementary Figure 1, Sup-
porting Information), but one contained an internal standard
(traditional design) while the other contained extra biological
replicates (alternative design).

Upon comparison of the variances obtained with the 4 gels
with internal standards compared to the 4 gels without (using
respectively the internal standard measurements or the SIBR
normalization algorithm to compensate for spatial intensity
bias), we observed a mild increase in variance in the latter. Due
to the higher replicate number (n ) 4 vs n ) 6) this increase
in variance did not lead to lower statistical power. A 25%
increase in statistical power (2-fold change, R ) 0.001) was even

Table 1. Spatial Intensity Bias Removal (SIBR) Using Biological Replicates: Spatial Intensity Bias Determined on Real Data vs
XY-Coordinate Permutationsa

Experiments Permutations µ Permutations σ
SD 100*(1-10-16) th

percentile Real SIBR surface

Apis mellifera (CCD) 0.0594 0.0034 0.0875 0.2038
Felis catus (CCD) 0.0473 0.0018 0.0622 0.1217
Mus musculus 1 (CCD) 0.0300 0.0015 0.0424 0.1335
Mus musculus 2 (CCD) 0.0362 0.0026 0.0577 0.1475
Mus musculus 3 (Typhoon) 0.0222 0.0012 0.0321 0.0802
Mus musculus 3 (CCD) 0.0396 0.0020 0.0561 0.1113
Salmonella typhimurium (Typhoon) 0.0346 0.0014 0.0462 0.1439
Validation Experiment: Traditional Design (CCD) 0.0328 0.0025 0.0535 0.1565
Validation Experiment: Traditional Design (Typhoon) 0.0187 0.0014 0.0303 0.1010

a µ represents the mean of the standard deviations of the SIBR surfaces of 10 000 permutations for that experiment. σ represents the standard deviation
on µ. The third column gives the (100*(1-10-16) th percentile of the distribution of standard deviations of all the permutations. The fourth column is the
standard deviation of the SIBR surfaces for the real data.

Table 2. Correlation Analysis of Spatial Biases Estimated by
the Spatial Intensity Bias Removal Normalization (SIBR) Using
Internal Standard Measurements and SIBR Using Only
Biological Replicate Measurementsa

experiments µcorr σcorr

Apis mellifera 0.677 0.138
Felis catus 0.676 0.122
Mus musculus 1 0.730 0.375
Mus musculus 2 0.462 0.403
Mus musculus 3 (CCD) 0.377 0.204
Mus musculus 3

(Typhoon)
0.775 0.094

Salmonella typhimurium 0.874 0.095
Validation Experiment:

Traditional Design (CCD)
0.808 0.051

Validation Experiment:
Traditional Design (Typhoon)

0.777 0.192

a µcorr is the mean over all gels of the correlation coefficients between
the two fitted surfaces, σcorr is the standard deviation on that mean.
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observed compared to the traditional experimental design
(Table 3). We note that one of the gels of the alternative design
set contained several heavily distorted gel regions contributing
to a larger variance of this data set. If all gels had been equally
undistorted an even more marked increase in power would
have been achieved.

Discussion

Gel-based proteomics has come a long way since inception
of two-dimensional poly acrylamide gel electrophoresis in the
1970s. Critical improvements in labeling techniques allowed
sample multiplexing and paved the way for difference gel
electrophoresis (DIGE) of gel-based proteomics. With new
developments came new experimental designs and the internal
standard design as proposed by Alban et al.7 seemed a
straightforward choice. “Warp first” workflows are emerging
in commercial image analysis software nowadays, allowing for
full spot matching and thus providing the user with complete
data sets (i.e., without missing values). Although these tech-
niques are prone to spot amalgamation in regions of variable
spot resolution and can lead to erroneous measurements for
the amalgamated species of spots,33 the resulting complete data
sets have some important advantages as well. They are perfectly
suited for multivariate statistical techniques, such as, for
example, principal component analysis, that can offer a high
level view on the data and result in novel interpretations, but
they also open doors for new data preprocessing techniques.
Data preprocessing is essential in complex high-throughput
techniques as it attempts to discern differences caused by
experimental factors and real biological differences between
the samples, the latter of course being the one of interest. Better

Figure 3. Standard deviation improvements after normalization: These density plots show the improvements in within-treatment-
group standard deviations as compared to raw data. The different lines indicate different normalization schemes: nonlinear intensity
dependent rescaling only (NLIDR), NLIDR plus spatial intensity bias removal (NLIDR + SIBR), and normalization with the internal standard
after NLIDR (NLIDR log-ratios) The more the distribution is “shifted to the right” (bigger surfaces under the curve for standard deviation
differences larger than zero), the more improvement can be seen from the normalization, which translates to a lower technical variance
resulting in a higher statistical power. Additional plots for the remaining data sets can be found in the Supporting Information
(Supplementary File 5).

Table 3. Power Comparison Using Traditional vs Alternative
Designa

traditional
design (CCD)

alternative
design (CCD) % increase

Variance (75% percentile) 0.11 0.134
Power (2-fold, R ) 0.001) 0.341 0.56 64%
Power (1.5-fold, R ) 0.01) 0.131 0.222 69%

traditional
design

(Typhoon)

alternative
design

(Typhoon) % increase

Variance (75% percentile) 0.021 0.037
Power (2-fold, R ) 0.001) 0.709 0.892 25%
Power (1.5-fold, R ) 0.01) 0.735 0.801 8%

a Power was calculated for different fold-changes and significance
levels. We used a measure of variance which encompassed 75% of the
spots and calculated 1.5- and 2-fold change with a confidence of
respectively 0.01 and 0.001.
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techniques mean less experimental artifacts and more reliable
data. With these new developments, experimental design needs
to be rethought to maximize the quality of the results.

By using the SIBR method on data sets with permutated spot
coordinates for six independent DIGE studies, we demonstrate
the existence of spatial trends in the intensity measurements
of the internal standard. Using only the biological samples in
the entire experiment, we were able to model these trends with
SIBR. The fact that they are highly correlated to the spatial
trends obtained from the internal standard indicates a dye-
independent effect. We compared the use of internal standard
measurements with the SIBR normalization algorithm for their
potential to remove spatial intensity biases. It is important to
remark that both approaches might suffer from correlation
issues that translate to a higher similarity between samples on
the same gel than exist in reality. When taking ratios, the Cy3
and the Cy5 channel become correlated through the Cy2
channel, undermining the statistical assumption of indepen-
dent sampling.34 When using SIBR, measurements can become
correlated because the same spatial biases are subtracted from
all three samples on a gel. As a consequence, while the observed
increases in sensitivity are still valid, calculated power values
are not correct as such because the student t test, which is by
far the most used, does not take such correlations into account.
More complex statistical models, however, were beyond the
scope of this article and are thus not discussed here.

Not removing the systematic bias that was occurring on the
spatial level would in either case have resulted in an even larger
correlation of the samples within a gel, and while the use of
the internal standard is equally good (and sometimes better)
for coping with spatial intensity bias than SIBR, its inclusion
in the experimental design comes at a cost of losing one-third
of the available sample space. This implies that, by relying on
SIBR instead of an internal standard, an equal amount of
samples can be run on less gels, resulting in lower costs, shorter
sample preparation and image analysis steps, easier handling,
and ultimately in less intergel variability. Alternatively, and
more importantly, one could choose to run more biological
samples on the same number of gels, leading to more mea-
surements of what is really of interest. We demonstrate that
by applying such an alternative experimental design (omitting
the internal standard, but instead allocating an additional
biological sample per gel), in combination with the SIBR
normalization scheme, we are able to achieve a significant
boost in statistical power for detecting differential expression.
A boost in statistical power can reduce the false positive rate
for identifying differential protein abundances (less erroneous
identifications) without compromising sensitivity, a useful
improvement as downstream validation analysis of these results
can be very time and cost consuming. Such a boost in statistical
power could also be used to obtain a higher sensitivity for the
same false positive rate, that is, the ability to discriminate
smaller differences in protein abundances.
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