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 ABSTRACT 
Motivation: Existing (bi)clustering methods for microarray data 
analysis often do not answer the specific questions of interest to a 
biologist. Such specific questions could be derived from other infor-
mation sources, including expert prior knowledge. More specifically, 
given a set of seed genes which are believed to have a common 
function, we would like to recruit genes with similar expression pro-
files as the seed genes in a significant subset of experimental condi-
tions. 
Results: We introduce QDB, a novel Bayesian query-driven biclus-
tering framework in which the prior distributions allow introducing 
knowledge from a set of seed genes (query) to guide the pattern 
search. In two well-known yeast compendia, we grow highly func-
tionally enriched biclusters from small sets of seed genes using a 
resolution sweep approach. In addition, relevant conditions are iden-
tified and modularity of the biclusters is demonstrated, including the 
discovery of overlapping modules. Finally, our method deals with 
missing values naturally, performs well on artificial data from a re-
cent biclustering benchmark study and has a number of conceptual 
advantages when compared to existing approaches for focused 
module search. 
Availability: Software is available on the supplementary website. 
Contact: Thomas.dhollander@esat.kuleuven.be 
Supplementary Information: Available on  
http://homes.esat.kuleuven.be/~tdhollan/Supplementary_Information
_Dhollander_2007/index.html 

1 INTRODUCTION  
The availability of large microarray compendia has brought along many 
challenges for biological data mining. Several supervised and unsupervised 
methods have been developed for the analysis of such datasets. In particu-
lar, probabilistic models have become a popular choice for modeling high 
throughput genomic data because they allow natural handling of high noise 
levels (Friedman, 2004). The contribution in the current paper is mainly 
based on three observations: 

• Existing (bi)clustering methods for microarray data analysis often do 
not answer the specific questions of interest to a biologist. This lack 
of sharpness has prevented them from surpassing a rather vague ex-
ploratory role. Often, biologists have at hand a specific gene or set of 
genes (seed genes) which they know or expect to be related to some 
common biological pathway or function. Based on available high 
throughput data, they may want to recruit additional genes that are 

  
*To whom correspondence should be addressed.  

involved in that function. In particular, this problem formulation en-
tails various questions or queries such as “which genes involved in a 
specific protein complex are coexpressed?” or “given a set of known 
disease genes, how to select new candidate genes that may be linked 
to the same disease?” 

• Current microarray compendia consist of measurements in multiple 
biological conditions and it may not be clear which conditions are 
truly most relevant to the biological question at hand. Therefore, si-
multaneous identification of the appropriate subset of experimental 
conditions (features), often referred to as biclustering (see Madeira 
and Oliveira (2004) for a survey), has become a profitable extension 
to classical cluster analysis. In other words, the fact that some genes 
are only tightly coexpressed in a subset of experimental conditions 
(for these experimental conditions, their regulatory program signifi-
cantly overlaps) should be taken into account. Classical clustering 
cannot always recover such sets of genes if the patterns are obscured 
by a large set of irrelevant conditions (Prelic et al., 2006). Moreover, 
the discovery of relationships between the genes and the conditions 
may provide important information for unveiling genetic pathways 
(Van den Bulcke et al., 2006).  

• Genes are often involved in several pathways and functions, giving 
rise to the notion of overlapping transcriptional modules. Both small 
but highly homogeneous modules (high ‘resolution’) and larger but 
more heterogeneous modules (low ‘resolution’) can be interesting. 

 
The above observations inspired us to develop a Bayesian probabilistic 
framework for query-driven module discovery in microarray data. Bayesian 
models have shown promise in providing answers to specific questions or 
queries, by transforming the knowledge of biologists into prior probability 
distributions in the model (see, for example, Gevaert et al. (2006) and 
Bernard and Hartemink (2005)). In particular, we focus on the question: 
“which genes are (functionally) related to the seed genes and which fea-
tures (conditions) are relevant for this biological function?” We refer to 
such a set of genes and its relevant conditions with the terms ‘bicluster’ or 
‘module’. A resolution sweep approach was designed to resolve the resolu-
tion issue and identify overlapping modules that correspond to multiple 
pathways the query gene may be involved in (multiple regulation). 
 
Only few existing algorithms, such as the (Iterative) Signature Algorithm 
(Bergmann et al., 2003), Gene Expression Mining Server (Wu and Kasif, 
2005) and Gene Recommender (Owen et al., 2003) allow similar directed 
searches. In the remainder of the paper, we demonstrate the conceptual 
advantages and efficacy of our flexible QDB (Query-Driven Biclustering) 
modeling framework over these existing approaches. We propose a Condi-
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tional Maximization approach for model estimation (Gelman et al., 2004) 
and explain how intuitive choices for the prior distributions lead to a reso-
lution sweep approach. The method is evaluated on a series of artificial 
data sets. Search strategy and performance are compared with those of the 
Iterative Signature Algorithm and Gene Recommender. Finally, we discuss 
results obtained on the combined Gasch et al. (2000) and Spellman et al. 
(1998) yeast microarray gene expression data sets. 

2 METHODS 

2.1 Artificial data   
The artificial data were taken from the supplementary website of a recent 
biclustering benchmark study (Prelic et al., 2006). In a first scenario (S1), 
the data consist of 10 binary modules (expression value 1) embedded in a 
zero background (expression value 0). This simple setup is complicated by 
adding Gaussian noise with standard deviation up to 0.25 (A) or allowing 
module overlap (B). In (A), the modules have 10 genes and 5 conditions, 
while the modules in (B) each contain 10 + k genes and 10 + k conditions, 
where k (ranging from 0 to 8) is the number of genes and conditions in 
common between overlapping modules. A second scenario (S2) describes a 
similar case (same module sizes), only this time the data is not binary but 
continuous. The background values are samples from a Gaussian distribu-
tion, the bicluster values in each column are equal (B) or equal up to some 
Gaussian noise (A). For details, we refer to Prelic et al. (2006). No pre-
processing (such as discretization) was performed. We did not apply the 
output filtering procedure described in Prelic et al. (2006) to remove heav-
ily overlapping biclusters or limit the number of modules in the output.  
 
In all experiments, the seed consisted of genes correctly belonging to one 
of 10 artificial modules. We repeated the biclustering process 10 times, 
each time with randomly selected seed genes from a different module. The 
resulting biclusters were then scored with module recovery and bicluster 
relevance scores as described in Prelic et al. (2006) and in Supplementary 
File 1. The module recovery score indicates how well the gene content of 
the ‘ideal’ modules is on average reflected in the (best matching bicluster in 
the) bicluster results. The bicluster relevance score is related to the rele-
vance of the set of modules in the output. Both scores are maximal and 
equal to one if both module sets are equal. 

2.2 Seeds for combined Gasch and Spellman data set  
Seeds were taken from the supplementary website of one of our recent 
publications on module discovery in yeast (Lemmens et al., 2006). They 
correspond to very small gene sets that are selected based on similarity in 
motif, expression and ChIP-chip data. 

2.3 Yeast data 
We downloaded the yeast data from the supplementary material of Gasch et 
al. (2000) and Spellman et al. (1998). As in Lemmens et al. (2006), we 
normalized the log ratios of both data sets per gene (subtracting the mean 
of each profile and dividing by the standard deviation). No further preproc-
essing, such as discretization, was carried out. 

2.4 Functional enrichment 
The hypergeometric distribution was used to determine which Gene Ontol-
ogy Biological Process categories (Ashburner et al., 2000) were statisti-
cally overrepresented in the selected biclusters resulting from the resolution 
sweep approach (Sokal and Rohlf, 1995). All known GO-BP labels from 
Ensembl (Hubbard et al., 2007) were propagated towards the root of the 

hierarchy. A Benjamini-Hochberg method was used to correct for multiple 
testing (Storey and Tibshirani, 2003).  

3 MODEL AND ALGORITHM 
Our general goal is the identification of clusters of genes with similar ex-
pression profiles (coordinated changes) in a significant subset of measured 
experimental conditions (i.e. constant column biclusters in the terminology 
of Madeira and Oliveira (2004)). By exploiting knowledge contained in a 
given set of seed genes, we limit the search space through the assumption 
that the biclusters of interest are those that represent patterns similar to the 
seed gene pattern (note that this eliminates the need for a masking ap-
proach). Because a gene might belong to more than one pathway, we im-
plement a resolution sweep approach to explore a continuum ranging from 
small but highly homogeneous modules to larger but more heterogeneous 
modules. Modules at different ‘resolutions’ might emphasize different 
aspects of the cellular network. A statistical criterion is used for automatic 
identification the resolutions of interest. 
 
In the remainder of this section, we first introduce the general modeling 
framework and briefly discuss a strategy for model estimation. Subse-
quently, we introduce the query via prior distributions and conclude that a 
resolution sweep approach is appropriate for the query-driven biclustering 
problem if the most interesting resolutions are a priori unknown. 

3.1 General modeling framework 
The core of the probabilistic framework resembles that of (Sheng et al., 
2003), the main ingredients being column-wise probability distributions 
and hidden labels (g) for the genes and (c) for the conditions to indicate 
bicluster membership. Assume each column j of the (n x m) expression data 
matrix X represents an experimental condition and each row i represents a 
gene. Expression values xij for which both the corresponding gene and 
condition are assigned to the bicluster (gi = 1 and cj = 1) are then modeled 
by the bicluster distribution (superscript ‘bcl’) of the corresponding condi-
tion. All other expression values are modeled by the background distribu-
tion (superscript ‘bgd’) of their corresponding condition. The use of condi-
tion-wise background distributions allows compensating for between-array 
differences in expression level variance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Conceptual scheme of the Bayesian framework for biclustering. On the left, 
column-wise (condition-wise) Gaussian distributions for the bicluster and background 
data are represented. Mean and variance parameters are represented by circles and 
hyperparameters by rectangles. In an iterative procedure, these models are re-
estimated while gene and condition labels are assumed fixed (full conditionals for 
model parameters). On the right, we illustrate how a binary gene label is re-estimated 
while the models and the other labels are assumed fixed (full conditionals for labels). 
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Of course, we do not know in advance which genes, conditions and expres-
sion values xij belong to the bicluster; the model therefore depends on hid-
den gene (g) and condition labels (c). Figure 1 shows a conceptual scheme 
of the framework. 
 
For the column-wise (condition-wise) statistical probability distributions 
we use Gaussian distributions with parameters θj = (µj, σj) and conjugate 
Normal - Inverse χ2 priors. The (full conditional) label probabilities are 
given by Bernoulli distributions with Beta priors. 

3.1.1 Prior distributions 
One of the strengths of the Bayesian probabilistic framework is the possi-
bility of using well-chosen prior distributions on the model parameters. We 
utilize conjugate Normal - Inverse χ2 priors on the column-wise Gaussian 
probability distributions (Gelman et al., 2004):  
 
 
If xij indicates the expression level of gene i in experimental condition j, the 
corresponding distributions for bicluster and background can then be writ-
ten as 
 
 
 
 
 
 
 
The parameterization of the above formulas is justified by the interpretation 
of the corresponding full conditional distributions in section 3.1.2 (where 
parameters κ and ν are equivalent to a number of prior observations). In 
addition to the prior distributions on the model parameters, Beta priors 
Β(ξg1, ξg0) and Β(ξc1, ξc0) on the parameters of the Bernoulli label distribu-
tions can be used to specify a prior believe that a gene or condition belongs 
to the bicluster (bicluster size).  
 
We postpone the discussion of parameter choices for the priors to section 
3.3. 

3.1.2 Full conditional distributions 
As illustrated in Supplementary File 1, the full conditional distributions for 
the gene labels are Bernoulli distributions: 
 
 
 
 
 
 
In this expression, ξg1 and ξg0 are parameters of the Beta prior distribution 
Β(ξg1, ξg0) on the probability that a gene belongs to the bicluster, n is the 
total number of genes, θ the set of model parameters (µ, σ), ψ the total set 
of hyperparameters (κ, ν, s, ϕ, ξg0, ξ g1, ξc0, ξ c1) and ║g≠i║1 the one norm of 
the current (binary) gene label vector, except for label i. In other words, the 
second factor depends on the number of genes currently in the bicluster as 
well as prior knowledge on the bicluster size. The first factor corresponds 
to the likelihood ratio of bicluster versus background model. 
 
A similar model holds for the full conditional distribution of the condition 
labels c (see Supplementary File 1). 

Given the choice of the Normal – Inv – χ2 priors, the full conditional distri-
butions for the model parameters are given by 
 
 
 
 
 
 
 
and 
 
 
 
 
 
 
 
 
The prior parameters κ and ν can be interpreted as ‘pseudocounts’ or the 
number of ‘prior observations’ for the estimates of the mean and variance 
respectively. The resulting estimates for means (variances) are weighted 
means of the observed sample mean bcl

jµ  (variance) and the prior mean bcl
jϕ  

(variance). For brevity, we omitted the formulas for the background model 
parameters, which are similar. Details on the derivations can be found in 
Supplementary File 1.  

3.1.3 Joint posterior distribution 
Given the data and a particular choice for the prior distributions, the joint 
posterior distribution p(θ, g, c | X, ψ) indicates the statistically most inter-
esting simultaneous assignments for the labels and the model parameters. 
Unfortunately, it is not possible to use this joint posterior distribution di-
rectly because we are unable to describe it analytically. We next discuss a 
strategy to detect its local maxima using information on the corresponding 
full conditional probability distributions only. 

3.2 Algorithm 
Conditional Maximization or CM (Gelman et al., 2004) consists of alterna-
tively maximizing a set of full conditional distributions. These maximiza-
tion steps are repeated until the procedure converges to a local mode of the 
corresponding joint probability distribution. Figure 1 illustrates the alternat-
ing procedure; the full conditionals and joint posterior distributions were 
introduced in sections 3.1.2 and 3.1.3 respectively. In the query-driven

 context under study, convergence to local modes in the posterior landscape 
will often be sufficient because the query is introduced through strong 
priors on the model parameters (see section 3.3). Strong priors act as a 
powerful zoom lens to magnify interesting regions in the likelihood land-
scape. Therefore, they tend to give rise to rather simple posterior distribu-
tions, even when the corresponding likelihood landscape is complex and 
contains many modes. Furthermore, the knowledge represented by the seed 
genes can be used for clever initialization (Supplementary File 1). 

3.3 Introducing the query 
The discussion in Section 3.1 applies to all possible instantiations of mod-
els in the general framework. Before tying up any prior parameters based 
on the knowledge of the seed genes, it is useful to stress the flexibility of 
the presented framework. The remainder of this paper describes a particular 
instantiation of the model, using specific choices for the priors, which we 
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deemed intuitive. One should keep in mind that alternative ways to intro-
duce the prior knowledge exist.  

3.3.1 Different kinds of priors 
Strictly speaking, 4 groups of parameters specify the priors: 

(1) The parameters for the priors on the means and variances of the 
bicluster models 

(2) The parameters for the priors on the means and variances of the 
background models 

(3) Two parameters for the Beta prior Β(ξg1, ξg0) on the prior probabil-
ity that a gene belongs to the bicluster  

(4) Two parameters for the Beta prior Β(ξc1, ξc0) on the prior probabil-
ity that a condition belongs to the bicluster 

Although these parameters have a clear-cut statistical interpretation, it is 
not desirable to choose all of them manually. Therefore, we decided to fix 
most of them by default:  

• Assume that the prior probability of a gene belonging to the bicluster 
is unknown. The corresponding Beta prior can then be fixed to B(1,1) 
(noninformative, uniform distribution), eliminating (3).  

• For the Beta prior Β(ξc1, ξc0) on the condition labels, ξc1 equals twice 
the total number of conditions in all experiments while ξc0 was fixed 
and equal to one in all experiments (all artificial and real data sets). 
This setting forces (at least) those conditions into the background for 
which the bicluster genes do not have a significantly better likelihood 
under the bicluster distribution. The exact setting of this prior does 
not have much influence as long as ξc0 > ξc1 (data not shown).  

• To sufficiently restrict the freedom of the bicluster (preventing it 
from drifting too far away from the seed profile), we force the mean 
of the bicluster to be equal to the mean of the seed genes 
( seedbcl

jj µϕ = and κbcl = ∞) in the selected conditions, tying up additional 
parameters in (1).  

• For the priors on the means and variances of the background models, 
we use jj µϕ =bgd  and jjs σ=bgd with a number of pseudocounts κbgd and 
νbgd equal to the total number of genes in the data set. The exact num-
ber of pseudocounts has little influence for reasons explained on the 
Supplementary website. 

 
When the other prior distributions are fixed as described above, the remain-
ing bicluster variance priors (one for each condition) provide sufficient 
flexibility to accommodate various query-driven biclustering strategies. As 
explained in section 3.1.1, these priors are (scaled) inverse χ2 distributions 
with two kinds of parameters: (sj

bcl)2 indicates the prior variance while νbcl 
refers to the number of prior observations (seed strength). For a bicluster 
containing 10 genes at a certain point in the procedure, 90 prior observa-
tions would mean that the resulting variance of the bicluster is determined 
for 90% by the prior variance and for 10% by the variance of the 10 genes 
currently in the bicluster.  

3.3.2 Noninformative variance priors 
In most artificial data scenarios, results are only weakly dependent on the 
choice of the prior parameters νbcl and sj

bcl. In general, priors with low 
information content (weak priors) perform well here, since the patterns are 
very strong in most cases and this strength is (almost) equal for all mod-
ules. Therefore, it is in principle possible to use a noninformative prior for 

the variance (small number of prior observations νbcl with large variance 
(sj

bcl)2, for instance equal to background variance) and still detect most of 
the modules (data not shown). 

3.3.3 Resolution sweep 
In real data sets we expect the choice of the number of prior observations to 
be more crucial. Indeed, these data are typically dominated by a small 
number of very strong biclusters. Therefore, stronger priors are needed to 
extract interesting but statistically less significant patterns around the seed. 
For example, simulations with noninformative or seed-based variance 
priors on the Gasch et al. (2000) and Spellman et al. (1998) yeast expres-
sion data showed that the algorithm converged to a part of the large domi-
nant ribosome biogenesis module in many cases. Indeed, the statistical 
significance of very strong correlation between small numbers of genes in a 
large number of experimental conditions can be exceeded by weaker corre-
lation between larger numbers of genes over a smaller subset of the condi-
tions. It may happen that the profiles of the seed genes match better with 
the expression pattern of a dominant bicluster than with the background 
pattern over a sufficiently large number of conditions, causing the algo-
rithm to get stuck in the corresponding mode of the posterior distribution. 
In such cases, it seems preferable to be able to explicitly zoom in on more 
appropriate modules by using informative variance priors as a control han-
dle. In general, a decrease in prior variance will give rise to smaller mod-
ules.  
 
Since the most interesting setting for the prior variance is unknown (and 
noninformative variance priors do not work well in practice), it seems 
necessary to explicitly test a whole range of informative settings for the 
prior on the variance. We propose a resolution sweep approach in which 
the prior variance is slowly (and linearly) increased while the algorithm is 
running. In fact, this means that the starting point at each prior setting is 
equal to the posterior mode that was found with a slightly smaller value of 
the variance prior, a sensible initialization. In other words, we start close to 
the seed (Supplementary File 1) and stay in a mode of interest at any time. 
Because the algorithm remains near convergence, only a few iterations are 
needed for each prior variance setting. 
 
Varying prior variance corresponds to traveling through the modular struc-
ture of the data in the neighborhood of the seed (see Supplementary File 1 
for examples and an intuitive comment on the notion of resolution). In both 
the real and artificial data sets, linear increases of the prior parameter result 
in discrete steps for the observed module sizes, illustrating crisp transitions 
between modules at different resolutions. In Section 5.2.1, we report on an 
example that evolves from very specific cell-cycle related functions over 
less specific ones to ribosome biogenesis related functions (when the prior 
variance is large). The corresponding figures (and many more examples on 
the supplementary website) reveal some well-known modularity properties 
of genetic regulatory networks (Ihmels et al., 2002).  
 
All artificial and real data simulations shown here were obtained using the 
resolution sweep approach. In artificial data, we linearly increased the 
variance prior parameter (sj

bcl)2 for each condition from 0 to the correspond-
ing background variance over 100 iterations. In the yeast data sets, we used 
the same strategy but over 2000 iterations. The variance priors were chosen 
to be very informative by setting the number of pseudocounts νbcl equal to 
the total number of genes. To automatically detect the resolutions of inter-
est, we identified the local maxima in the Akaike Information Criterion 
(AIC) (Akaike, 1974) for model selection on the resolution sweep path (see 
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Supplementary File 1 for a rationale on this criterion for automatic module 
detection). Since the pattern search is centered on the mean seed gene pat-
tern, it is not surprising that the seed itself corresponds to one of those local 
optima in many cases. Therefore we consider the seed to be a trivial mod-
ule and exclude it from the output. As explained in the Systems and Meth-
ods section, no additional postprocessing was carried out. 
 
Note that we do not only report the module with the maximal AIC score for 
each seed. Indeed, modules that are statistically most relevant are not al-
ways most interesting. In the yeast data set for example, dominant ribo-
some biclusters containing many genes often have the highest score. Never-
theless, it is worth noting that in the artificial data scenarios under study the 
best scoring module almost always corresponded to the ‘correct’ module. 

4 IMPLEMENTATION 
All algorithms were implemented in the R language and environment for 
statistical computing (R Development Core Team, 2006). An implementa-
tion of the Gene Recommender algorithm, the GO Biological Process func-
tional annotations and the multiple testing correction of the p values were 
obtained using packages from the Bioconductor repository (Gentleman et 
al., 2004). 

5 RESULTS AND DISCUSSION 

5.1 Artificial expression data 
In order to make a fair comparison and avoid any bias in creating our own 
data sets, we systematically evaluated our QDB algorithm on two artificial 
data scenarios (S1 and S2) from a recent biclustering benchmark paper 
(Prelic et al., 2006), containing noiseless overlapping modules (A) and 
noisy non-overlapping modules (B). More details on the setup and the 
definition of the performance measures can be found in the Systems and 
Methods section. To make the benchmark more informative, we included 
results of the Iterative Signature Algorithm (ISA) and Gene Recommender 
(GR) using the same seeds. A short description of the ISA and GR algo-
rithms can be found in Supplementary File 1. Before discussing numerical 
results, we highlight some fundamental conceptual differences between 
QDB and the ISA and GR algorithms.  

5.1.1 Conceptual differences - Iterative Signature Algorithm 
The parameter variation approach suggested by the authors of the Iterative 
Signature Algorithm (Ihmels et al., 2004) is similar in spirit to the resolu-
tion sweep approach presented here. However, our approach is 
  

different in some important ways: 

• ISA is a clever algorithm rather than a solid probabilistic modeling 
framework. Modules are defined as fixed points of this algorithm 
without referring to an underlying mathematical model or explicit 
cost function. This makes it difficult to extend ISA to include other 
data sources, where the algorithm may not be directly applicable. The 
QDB framework is flexible in allowing the specification of other dis-
tribution types or search strategies. 

• The probabilistic interpretation of QDB allows automatic selection of 
interesting modules on the resolution sweep path, via local optima in 
the AIC score. In contrast, ISA does not have a natural notion of sta-
tistical scores for the reported modules. 

• The search strategy of ISA is based on significant average overex-
pression or underexpression of the bicluster genes in the bicluster 
conditions whereas the QDB search strategy is based on significant 
differences in expression between the bicluster and the background.  

• In contrast to ISA, QDB deals with missing values naturally (Sup-
plementary File 1).  

• ISA is query-based in the initialization only. Strictly speaking, there 
is no guarantee that the module does not drift away from this query 
point, due to the presence of more dominant modules nearby. Some 
experiments on real data indeed revealed modules that did not contain 
any of the query genes at any resolution (as specified by threshold pa-
rameter tG) of interest. In contrast, by explicitly controlling the statis-
tics (for example mean and variance) of the bicluster to a degree 
specified by the prior strength, it is straightforward to prevent QDB 
from reporting biclusters that are too remote from the query. 

5.1.2 Conceptual differences - Gene Recommender 
Gene Recommender (Owen et al., 2003) is designed to prioritize genes 
rather than to detect transcriptional modules. The output of the core algo-
rithm is an ordered gene list. In order to convert this output into a module 
format, an appropriate cutoff has to be specified. The default threshold of 
the Gene Recommender software corresponds to 50% recall, but on small 
seed sets (for example two genes) this yields trivial results, mostly modules 
containing one (seed) gene only. Therefore, we decided to show GR results 
with optimal thresholds: for every seed we selected those thresholds that 
correspond to optimal module recovery and bicluster relevance scores, 
resulting in an upper bound on GR’s performance. It is important to keep 
this in mind when interpreting the numerical results in the next section. 

Figure 2: Evolution of module recovery scores as a function of noise (indicated by the letter A) and overlap (letter B), in two artificial data scenarios (S1 and S2), taken from
(Prelic et al., 2006).  Results obtained with seeds of one gene are shown with gray solid lines, results with seeds of two genes in black dotted lines. QDC refers to an additional
clustering variant of our own query-driven Bayesian framework (see main text). 
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Three more advantages of QDB over GR are worth mentioning in a module 
discovery context: 

• In contrast to QDB, GR is unable to deal with queries of one gene 
only. 

• The GR output does not contain as much information as the QDB 
output on the structure of the modules over different resolutions. Al-
though a variation of the cutoff parameter on the output list corre-
sponds to some notion of resolution, the condition content remains 
the same and no genes are allowed to drop out upon increasing the 
threshold. Therefore, the notion of overlapping modules at different 
resolutions does not exist as such in the Gene Recommender system. 

• GR first selects appropriate conditions and then uses the correlation 
of candidate genes in the selected conditions to obtain a ranking of 
the genes with respect to the seed. While QDB simultaneously selects 
genes and conditions, this is not the case for GR. 

5.1.3 Simulation results 
Figure 2 shows module recovery scores for small seeds of one and two 
genes.  Due to a lack of space, we moved the corresponding bicluster rele-
vance plots to our supplementary material (Supplementary Figure 1).  
 
In general, query-based algorithms perform very well on these data com-
pared to various global biclustering methods (Prelic et al., 2006). This 
illustrates that the use of a query can facilitate the search, even though the 
setup uses small data sets with modules of nearly equal strength and there-
fore does not fully exploit the advantages of the query-based approaches. 
For every scenario, scores are comparable with the best scores in Prelic et 
al. (2006). 
 
To make the comparison more informative, we included a query-based 
clustering (in contrast to biclustering) variant of our algorithm, by simply 
removing the condition selection. As expected, the biclustering variant 
outperforms the clustering variant, especially in noisy scenarios. This dem-
onstrates that removing irrelevant conditions can substantially improve the 
results.  
 
The performance of QDB and ISA is nearly equal in the noise scenarios. In 
the overlap scenarios, QDB outperforms ISA, the main reason being the 
multi-resolution aspect and the automatic detection of the most relevant 
resolutions in QDB. Moreover, QDB modules with the maximum AIC 
score were ‘correct’ modules in almost all scenarios, supporting the use of 
the AIC scores as a measure of statistical relevance. ISA is unable to report 
the most relevant modules in the overlap scenarios because they do not 
correspond to the resolution represented by the (default) gene and condition 
resolution settings. Even when used in a parameter variation setting (as in 
Ihmels et al. (2004)), ISA does not have a natural notion of statistical 
scores for the reported modules. 
 
GR possibly performs well on overlap scenarios but is outperformed by 
both ISA and QDB in noisy scenarios. Recall that the plots show upper 
bounds on GR’s performance only. 

5.2 Yeast expression data 
Although artificial data are helpful to gain understanding in properties of 
algorithms, they remain an approximation of biological reality. Therefore, 
the performance of our approach was further examined by applying the 
QDB resolution sweep algorithm to a concatenation of two well-known 

yeast expression compendia (Gasch et al. (2000) and Spellman et al. 
(1998)). Seeds were taken from the supplementary website of a recent 
paper on module discovery in yeast (Lemmens et al., 2006). The query-
driven biclustering algorithm can act as a more sophisticated approach to 
the so-called seed extension step in Lemmens et al. (2006).  
 
The results of our analyses of over 100 sets of seed genes can be found on 
our supplementary website. In most cases, we were able to find highly 
enriched biclusters associated with functions similar to those described in 
Lemmens et al. (2006). Additionally, we gain information through condi-
tion selection and reveal relationships between functions. Moreover, the 
suggested approach is robust against noise.  
 
Most cell cycle seeds ultimately evolve into ribosome biogenesis related 
modules, while most nutrient-deprived seeds evolve over nitrogen com-
pound metabolism into aerobic respiration and more general energy-
related functions. For galactose metabolism seeds we did not observe any 
function changes over the tested resolution range. For more details, we 
refer to the supplementary website. 

5.2.1 A cell cycle bicluster example 
Figure 3 and Figure 4 show an example of overlapping modules that were 
detected using one of the seeds. The seed consisted of two genes (IRC8 and 
CDC5) and was obtained using the Spellman data set (together with ChIP-
chip and motif data, as discussed in Lemmens et al. (2006)). Figure 3 illus-
trates how the bicluster grows (in size) when the (prior) variance is gradu-
ally increased (resolution sweep). When the prior variance is increased, the 
number of selected conditions decreases while the number of genes starts to 
increase. The first selected module (A) contains genes which are involved 
in DNA-dependent DNA replication. However, it does not have a signifi-
cant functional overrepresentation after correcting for multiple testing. 
When we further increase the variance, the algorithm picks up the signal 
from stronger mitotic cell cycle (pcorr = 1.6e-3) and cell division (pcorr = 
4.1e-7) modules. Around iteration 1300, there is an abrupt transition to an 
overlapping ribosomal module (pcorr < 1e-16). The latter change (from 
module F to G in Figure 3) includes a significant drop in the number of 
selected conditions, together with an increase in the number of selected 
genes. Notably, many cell cycle conditions (Spellman et al., 1998) are lost, 
in agreement with the change in function. 
 
The described transition is interesting because it reveals overlapping biclus-
ter patterns in the data. This is illustrated in more detail in Figure 4. The 
profiles of the seed genes are displayed separately (S), but these genes can 
be traced back to the intersection of the biclusters. It is important to note 
that the profiles of the ribosome specific genes G3 do not line up with the 
profiles of the cell-cycle genes G1-G2 in the cell-cycle specific condition 
set C1. Additionally, one can verify that gene-condition combinations G4-
C1, G4-C2 and G4-C3 in the background do not correlate well with the 
profiles in the biclusters. The remaining conditions (C4) do not belong to 
either bicluster because the expression of the bicluster genes is not suffi-
ciently coherent or the (average) pattern of the seed genes was too dissimi-
lar from the expression values in G1-G2-G3. Note that there is always a 
trade-off between following the seed and allowing deviations from the seed 
pattern based on evidence in the data. The more informative the priors are, 
the more our method sticks to the (mean) seed profile.  
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5.3 Perspectives and future work 
The proposed probabilistic framework is flexible and can be extended to a 
data integration context, by using appropriate statistical models for differ-
ent data sources. This is a challenge we are currently pursuing. 
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Figure 4: Profiles of bicluster F (cyan) and G (purple) of Figure 3, illustrating the 
transition from a cell cycle bicluster into a ribosomal bicluster. The profiles of the
seed genes (S) are framed in yellow. As expected, the seed genes can be traced back
to the intersection (G2) of the gene sets belonging to both biclusters. The bar on the
bottom indicates which conditions are from the Gasch (light gray) and Spellman
(dark gray) data sets. For clarity, all gene sets are stretched to similar sizes (S: 2 
genes, G1: 1 gene, G2: 24 genes, G3: 1550 genes; G4: 4569 genes; C1: 100 condi-
tions, C2: 90 conditions, C3: 21 conditions, C4: 39 conditions). Missing values in
the expression array are indicated in gray. 

Figure 3: Evolution of bicluster S9 (based on Spellman et al. (1998) seed number 9) 
with increasing prior variance from left to right. Letters indicate the selected modules
at various resolutions. Modules with the same gene content were grouped in one
letter symbol. Functionally enriched GO Biological processes for the selected mod-
ules range from mitotic cell cycle (D: p = 1.46e-6, pcorr = 1.6e-3) over cell division
and cytokinesis (E-F: p = 1.99e-10, pcorr = 4.1e-7) to ribosome biogenesis and as-
sembly (G-H-I: pcorr < 1e-16) as the prior variance increases. 


