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We present a method for inference of transcriptional modules from heterogeneous data 
sources. It allows identifying the responsible set of regulators in combination with their 
corresponding DNA recognition sites (motifs) and target genes. Our approach 
distinguishes itself from previous work in literature because it fully exploits the 
knowledge of three independently acquired data sources: ChIPchip data; motif 
information as obtained by phylogenetic shadowing; and gene expression profiles 
obtained using microarray experiments. Moreover, these three data sources are dealt with 
in a new and fully integrated manner. By avoiding approaches that take the different data 
sources into account sequentially or iteratively, the transparancy of the method and the 
interpretability of the results are ensured.  Using our method on biological data 
demonstrated the biological relevance of the inference. 

1. Introduction 

Nowadays, data representative of different cellular processes are being 
generated at large scale. Based on these omics data sources, the action of the 
regulatory network that underlies the organism’s behavior can be observed. 

Whereas until recently bioinformatics research was driven by the 
development of methods that deal with each of these data sources separately, the 
focus is now shifting drastically towards integrative approaches dealing with 
several data sources simultaneously. Indeed, technological and biological noise 
in the individual data sources is often so prohibitive and unavoidable that 
standard methods are bound to fail. Then only a combined use of heterogeneous 
and independently acquired information sources can help to solve the problem. 
Furthermore, these different points of view on the biological system allow 
gaining a holistic insight into the network studied. Therefore, the integration of 
heterogeneous data is an important, though non-trivial, challenge of current 
bioinformatics research. 
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In this study we focus on 3 types of omics data that give independent 
information on the composition of transcriptional modules, the basic building 
blocks of transcriptional networks in the cell: ChIPchip data (chromatin 
immunoprecipitation on arrays) provides information on the direct physical 
interaction between a regulator and the upstream regions of its target genes; 
motif information as obtained by phylogenetic shadowing describes the DNA 
recognition sites of these regulators; and gene expression profiles obtained using 
microarray experiments describe the expression behavior in the conditions 
tested. By integrating these three data sources, we aim at identifying the 
concerted action of regulators that elicit a characteristic expression profile in the 
conditions tested, the target genes of these regulators, and the DNA binding sites 
recognized by these regulators, thus fully specifying the relevant regulatory 
modules. 

Previous successful approaches to integrative analyses in bioinformatics can 
be found in the class of kernel methods [6,5] and methods based on graphical 
models [4,2,3]. Still, to our knowledge, no successful attempts to solve the 
problem of module inference exploiting all 3 independently acquired ChIPchip, 
motif and expression data have been made so far. Furthermore, most existing 
approaches that exploit the availability of heterogeneous data sources proceed in 
a sequential or an iterative way (see e.g. [14] for simultaneous detection of 
motifs and clustering of expression data, e.g. [7] for an iterative approach using 
ChIPchip and expression data, and e.g. [13] for simultaneous motif detection and 
analysis of ChIPchip data). In this paper, we present an approach that is different 
in spirit from previous methods, taking the different data sources into account in 
a highly concurrent way. The performance of the algorithm was demonstrated 
using the Spellman dataset [10] as a benchmark. 

2. Materials and Algorithms 

2.1. Data sources 

As microarray benchmark set the Spellman dataset was used [10], which 
contains 77 experiments describing the dynamic changes of 6178 genes during 
the yeast cell cycle. The profiles were normalized (subtracting the mean of each 
profile and dividing by the standard deviation across the time points) and stored 
in a gene expression data matrix further denoted by A with a row for each gene 
expression profile and a column for each condition. 

Genome-wide location data performed by Lee et al. [8] were downloaded 
from http://web.wi.mit.edu/young/regulator_network. These contain data on the 
binding of 106 regulators to their respective target genes in rich medium. The 
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ChIPchip data matrix (further denoted by R) used in our study consists of one 
minus the p-values obtained from combined ratio’s between immuno-
precipitated and control DNA (see [8]). Thus, a large value (close to one) 
indicates that the regulator is probably present. 

The motif data used in this study were obtained from a comparative genome 
analysis between distinct yeast species (phylogenetic shadowing) performed by 
Kellis et al. [9]. The authors describe the detection of 72 putative regulatory 
motifs in yeast. These motifs, available online as regular expressions, were 
transformed into the corresponding probabilistic representation (weight matrix): 
for each motif, the 20 Saccharomyces cerevisiae genes in which the motif was 
most reliably detected according to the scoring scheme of Kellis et al. [9] were 
selected. The intergenic sequences of these genes were subjected to motif 
detection based on Gibbs sampling [MotifSampler,12]. If the statistically 
overrepresented motif in this set of putatively coexpressed genes corresponded 
to the motif that was detected by the comparative motif search of [9] the motif 
model was retained. As such 53 of the 71 motifs could be converted into a 
weight matrix. This weight matrix was subsequently used to screen all intergenic 
sequences for the presence of the respective regulatory motifs using 
MotifLocator [11]. Absolute scores were normalized [11]. As the score 
distribution of the motif hits depends on the motif length and the degree of 
conservation of the motif, the distribution of the normalized scores differs 
between motifs. Therefore, normalized scores were converted into percentile 
values. This allows for an unbiased choice of the thresholds on the motif quality 
parameter in the algorithm. The matrix containing these percentile values is the 
motif data matrix M that will be used in this work. 

2.2. Module construction algorithm 

The aim of the method is to find regulatory modules, based on the gene 
expression, ChIPchip, and Motif data matrices as specified above.  

A module is fully specified by the set of genes it regulates (denoted by an 
index set g, pointing to the relevant set of rows of R, M and A), in addition to the 
set of regulators (corresponding to the columns with indices in a set called r in 
the ChIPchip matrix R) and motifs (corresponding to the columns with indices m 
in the Motif matrix M) that are responsible for the regulation of these genes. The 
goal of our method is to come up with regulatory modules specified in this way, 
by fully exploiting the heterogeneous data sources available. 

We note that the principles behind the method developed here are based on 
ideas similar to those that laid the foundations for the Apriori algorithm, 
originally developed in the database community [15]. 
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Seed construction.  This is the main step of the algorithm, and allows the 
construction of a good guess (or seed) of the modules. The idealized goal of this 
step is to find a set of genes g, that have the same expression profile, and such 
that there exist sufficiently large sets of regulators r and of motifs m that are 
entirely present in all these genes. Since in practice it is not known exactly in 
which intergenic regions a certain motif occurs or where a regulator binds, we 
have to resort to the score matrices R and M. Furthermore, the expression 
profiles A of genes in a module will only be approximately equal, and possibly 
only in a set of conditions, so we relax this constraint to requiring a strong 
correlation instead of equality between them. 

Formally, then the task to solve is: 
 

Find all maximal gene sets g for which there exist an r of size |r|=rmin and a 
set m of size |m|=mmin, such that the following 3 constraints are satisfied: 

1.  R(i,j) > tr     for all i�g and j�r 

2.  M(i,j) > tm     for all i�g and j�m 

3.  corr(A(i,:) , A(j,:)) > ta     for all i,j� g 

where rmin, mmin and thresholds tr , tm and ta are parameters of the method. 

 
Here, a maximal set g is defined as a set that cannot be extended with 

another gene without violating one or more of these constraints. In the following, 
we will use the term valid set for a gene set g that satisfies these constraints. 

Clearly it is computationally impossible to tackle this problem with a naive 
approach: the number of gene sets is exponentially large in the number of genes 
in the dataset, which is prohibitive even for the smallest genomes. However, it is 
trivial to verify that: 

Observation 1: When a gene set does not satisfy the constraints, none of its 
supersets satisfy the constraints. 

This means that we can build up the maximal sets incrementally, starting 
with valid sets of size one, and gradually expanding them. Concretely, the 
(already less naive) algorithm would then look like*: 

                                                           
* Notationally, we will use Li to denote the list containing all valid gene sets with 

i genes. For an individual valid gene set we will use a bold face gk
i, with a 

superscript i to specify that it is an element of Li and thus contains i genes, and 
with a subscript k to distinguish it from the other gene sets in Li. The x-th gene 
in this gene set is denoted as gk(x), for brevity without superscript. 
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-  For all single genes, check if they satisfy constraints 1 and 2 (constraint 3 

is trivially satisfied for singleton gene sets). Make a list L  of all 
singleton gene sets that contain such a valid gene. 

- Set i = 2. 

- While size(Li-1) z 0 

For k=1:size(Li-1), expand set gk
i-1 ={gk(1), gk(2), … , gk(i-1)} � Li-1 

once for each gene g that is not yet contained in gk
i-1. Put the thus 

expanded sets {gk(1), gk(2), … , gk(i-1), g} that satisfy the 3 
constraints (to be verified in R, M and A), in a list Li. 

Set i = i+1. 

 
Notice that following this strategy, a gene set can be constructed in different 

ways, by adding the genes to it in a different ordering (i.e. in different iterations 
i). This can be avoided by adding a gene to a gene set gk

i-1 only whenever its row 
number g is larger than that of all other genes already in gk

i-1. Thus for every 
gk

i={gk(1), gk(2), … , gk(i)} � Li we always have that gk(x) < gk(y) for x < y. 
Additionally, in this way we can easily keep the list Li of gene sets gk

i sorted 
as well, where the sorting is carried out first according to the first added gene 
and last according to the last added gene. More formally: gk

i preceeds gl
i in Li if 

and only if gk(argminx(gk(x)zgl(x))) < gl(argminx(gk(x)zgl(x))) (this ordering of 
the list Li is indeed a total ordering relation.) 

Still the number of expanded gene sets can be huge in every iteration: each 
of the gene sets gk

i-1 in Li-1 must be expanded by all genes g>gk(i-1), after which 
the validity has to be checked by looking at the matrices R, M and A. This can 
still be too expensive. However, we can exploit the converse of Observation 1: 

Observation 2: Whenever a gene set satisfies the constraints, all of its 
subsets satisfy the constraints. 

Using this so-called hereditary property of the constraint set, in some cases 
we can conclude a priori �i.e. without checking in R, M and A� if an extended 
gene set of size i can possibly be valid or not: we simply have to check if all of 
its size i-1 subsets belong to Li-1. Only if this is the case, we still have to access 
the data in R, M and A; if it is not the case, we know without further 
investigation that the extended subset is invalid. 

Specifically, assume that we expand the gene set gk
i-1={gk(1), gk(2), … , gk(i-

2), gk(i-1)} � Li-1 with g, leading to {gk(1), gk(2), … , gk(i-2), gk(i-1), g}. Then, 
since for a valid size i set each of its size i-1 subsets must be contained in Li-1, 
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also {gk(1), gk(2), …  , gk(i-2), g} must be contained in Li-1. In other words: there 
has to be a gl

i-1={gl(1), gl(2), …  , gl(i-2), gl(i-1)} � Li-1 for which gk(x)=gl(x) for 
xdi-2, and g=gl(i-1). This can efficiently be ensured constructively, by exploiting 
the fact that the list Li-1, and all gk

i-1 themselves are sorted. Indeed, thanks to this, 
all gene sets gk

i-1 that have the first i-2 genes in common occur consecutively in 
Li-1. Therefore, to expand gk

i-1 with an additional gene, we only have to screen 
the list Li-1 starting at gk+1

i-1 and move forward in Li-1 for as long as the first i-2 
genes are equal to gk(1), gk(2),…  and gk(i-2). For every gene set gl

i-1 screened in 
this way, read the last gene gl(i-1) and append it to gk

i-1, thus resulting in a 
candidate gene set of size i, potentially to be appended to Li. To find out whether 
this candidate gene set is valid indeed, one still has to check the constraints 
explicitly. However, thus constructively exploiting the hereditary property, the 
number of queries to R, M and A is drastically reduced. Note that this strategy 
also ensures that Li is sorted automatically. 

 
Module validation.  In some cases the first step described above is not 
sufficient for adequate module inference. There are three reasons for this: 

First, the seed construction method can be rather conservative in recruiting 
genes, since each of the genes in the module has to satisfy all 3 of the 
constraints. Therefore, in a second step, we calculate the mean of the expression 
profiles of the seed modules found in the first step, further called the seed 
profile. Then we can additionally recruit all genes with a high correlation with 
the seed profile to be incorporated in the module. In order to determine an 
optimal threshold value for this correlation, we compute the enrichment of each 
of the motifs and regulators in the genes that have an expression profile that 
achieves this threshold correlation with the seed profile. The logarithm of the p-
value of the enrichment is then plotted as a function of this threshold (Figure 
(1)), and the threshold can be chosen such that this value is minimal. 

Second, sometimes it is undesirable to a priori decide how many motifs and 
regulators we want in the module, or it may be difficult to choose the thresholds 
tr, tm and ta (even though experiments show little dependence on these). Then 
one can first use the seed construction algorithm requiring only 1 regulator and 
motif, and with stringent thresholds, after which again the enrichment of all 
motifs and regulators can be plotted as a function of the correlation threshold 
with the mean profile of the seed module. For each such seed profile, the 
corresponding enrichment plot will visually hint at the number of motifs and 
regulators (namely the number of significantly enriched motifs and regulators).  

Third, similarly, the enrichment plot allows excluding false positive motifs 
or regulators: when they are selected in step 1, but appear not to be enriched in 
the validation step, they are considered as a false positives and discarded. 
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To calculate the enrichment, we first calculate the mean score of the module 
for the particular motif or regulator. Note that the mean score of a module by 
random gene selection is approximately Gaussianly distributed (central limit 
theorem), with mean equal to the mean over all genes, and variance equal to the 
overall variance divided by the size of the module. Thus, we can calculate the 
enrichment as the logarithm of the p-value based on a Gaussian approximation. 

Note that the p-values have been computed based on profiles that have been 
obtained from the data, such that they do not have a rigorous probabilistic 
interpretation here. Hence, we can only use them as explained above. 

2.3. Calculating overrepresentation of functional classes 

Functional categories for each gene were obtained from MIPS [18]. Functional 
enrichment of the modules was calculated using the hypergeometric distribution 
[16], which assigns to each functional class a p-value. 
 

 
A 

 
B 

 
 
Figure 1: Two examples (A and B) of the module validation step for two seed profiles: on the left, 
the logarithms of the p-values are plotted for all motifs as a function of the correlation threshold, on 
the right similarly for the regulators. Panel A shows the results for a false positive prediction 
(module 6): the regulators (right figure) of the identified seed module turn out not to be significantly 
overrepresented in genes correlated with the seed profile.  In panel B the results are displayed for the 
positive example described in the text. 
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3. Results 

Cell cycle related modules.  To test the reliability of our method, we used the 
well-studied Spellman dataset as benchmark. The analysis we performed using 
our two-step algorithm is illustrated by elaborating on the detection of the cell 
cycle related module 1. Using the seed detection step we searched for modules 
of genes having at least 1 common motif (1M) in their intergenic sequences and 
1 common regulator (1R) showing a small p-value in the ChIPchip data, and of 
which the expression profiles were mutually correlated with a minimal 
correlation of 0.7. This seed identification step then predicts several potential 
modules, and for each of them a seed profile can be calculated. For each of these 
modules we performed the module validation step. 

Fig. 1A (right figure) shows how this validation step allows one to visually 
detect that the regulator associated with this module is probably a false positive. 

In Fig 1B, using the parameter settings of 1M/1R, we identified a potential 
seed module containing regulator 98 (Swi4) and motif M_11 (known as a Swi4 
motif). Calculating the statistical overrepresentation of all motifs and regulators 
in genes correlated with the seed profile of this putative module showed that in 
this subset of genes indeed M_11 and Swi4 were overrepresented. The identified 
module seed thus is likely to be biologically relevant. These results also show 
that besides Swi4 and M_11, 3 additional motifs and regulators were 
overrepresented in subsets of genes correlated with the module seed profile, 
indicating the probable underestimation of the real module size. To verify 
whether these other regulators/motifs co-occur in the same subsets of genes and 
therefore comprise a larger module, we repeated the seed identification step 
using additional parameter settings (see Table 1 in the online supplement). From 
this result it appeared that we could recover a complete module consisting of the 
3 overrepresented regulators (Mbp1, Swi4, Swi6) and 2 motifs (M_16, M_10) 
and that this module is present in genes displaying an expression profile that 
shows a correlation of at least 0.7 with the average seed profile. Checking the 
identities of the regulators and the motifs  (regulators Mbp1, Swi4, Stb1 
combined with the regulatory motifs Mbp1 (M_18, M_12) and Swi4 (M_11 and 
M67)) showed that we identified a previously extensively described regulatory 
module of the yeast cell cycle.  

Besides this first module, 3 additional related cell cycle (Table 1) modules 
could be retrieved. Additional information on each of the separate modules can 
be found in the online supplement. Genes in the different modules showed peak 
expressions shifted in time relative to each other, as shown in Figure 1 of the 
online supplement. All of the predicted modules are conform the previously 
described knowledge on the cell cycle [8,17,7]. 
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Table 1: Cell cycle related modules. Column ‘R’ contains the regulators, column ‘M’ the motifs, the 
column ‘Functional Class: p-value’ contains p-values for several functional classes, and the ‘Seed 
Profile’ column contains a plot with the expression profiles of the genes regulated by the module. 
 

R M Functional Class: p-value Seed Profile 

M
o
d
u
l
e
 
1 

Mbp1 
Swi6 
Swi4 
Stb1 

M_18 
(Mbp1)  
M_12 
(Mbp1) 
M_11 
(Swi4)  
M_67 
(Swi4) 

10 CELL CYCLE AND DNA 
PROCESSING: 0 
10.03  cell cycle:  2.7e-5  
10.01  DNA processing: 1.3e-4 
 
42.04  cytoskeleton:  4.2e-3  
 

M
o
d
u
l
e
 
2 

Swi4 
Mbp1 
Swi6 
FKH2 

M_18 
(Mbp1) 
M_12 
(Mbp1) 
M_11 
(Swi4) 
M_8 
(Mcm) 

40  CELL FATE : 5.2e-4 
40.01  cell growth / morphogenesis:  2.6e-3 
 
43  CELL TYPE DIFFERENTIATION: 
5.2e-3 
43.01  f ungal/microorganismic cell type 
differentiation:  5.2e-3 
 
34.11  cellular sensing and response: 
5.3e-3 
01.05.01  C-compound and carbohydrate 
utilization:  6.8e-3 
10.03.04.03  chromosome condensation: 
 9.4e-3 

M
o
d
u
l
e
 
3 

NDD1 
FKH2 
Mcm1 

M_8 
(Mcm) 
M_30 
(Mcm) 

43 CELL TYPE DIFFERENTIATION: 
 3.6e-3  
43.01  fungal/microorganismic cell type 
differentiation:  3.6e-3  
 
10.03.03  cytokinesis (cell division) 
/septum formation : 4.8e-3 

M
o
d
u
l
e
 
4 

Swi5 
(Ace2) 

M_8 
(Mcm) 

32.01   stress response:  3.2e-3 
10.03   cell cycle:  8.7e-3 
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Non cell cycle related modules.  Besides the modules primarily involved in cell 
cycle, other modules could be identified in the Spellman dataset (see Table 2). 
Module 5, consisting of Fhl1, Rap1 and Yap5, involved in the regulation of 
ribosomal proteins was previously also identified [8]. Note that it was identified 
from a noise profile (i.e. a profile that does not change significantly and 
consistently with the cell cycles over the different time points) in this cell cycle 
dataset, indicating that even biological noise contains important information on 
regulatory networks. By our analysis we could pinpoint motif M_54 [9], as the 
regulatory motif correlated with this regulatory module. A second non cell cycle 
related module consisted of the genes regulated by the motifs M_7 and M_3 
(identified as ESR1 and ESR2 [9]).  For this module, related to transcription and 
ribosomal RNA processing only the motifs seemed informative (see module 6 in 
Table 2, and Figure 1A). 
 
Table 2: Non cell cycle related modules. 
 
 R M Functional Class: p-value Seed Profile 

M
o
d
u
l
e
 
5 

FKL1 
Yap5 
Rap1 

M_54 12  PROTEIN SYNTHESIS:  0 
12.01  ribosome biogenesis:  0 

 

M
o
d
u
l
e
 
6 

 / 

M_3 
(ESR1)  
 
M_7 
(ESR2)  

11  TRANSCRIPTION:  0.000002 
11.04  RNA processing:  0 
11.04.01  rRNA processing: 0 
 
 

 

4. Discussion  

We described a methodology combining ChIPchip, motif and expression data to 
infer complete descriptions of transcriptional modules. Our methodology 
consists of 2 steps. The seed construction step predicts the putative modules 
consisting of regulators, their corresponding motifs and the elicited expression 
profile. The validation step filters false positive predictions and gives further 
insight into the module size. 
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The problem is attacked in a very direct way: the integration of the data 
sources is achieved in a one-shot-algorithm, and requires no iteration over the 
different data sources. While the running time was very reasonable for all 
experiments carried out for this paper, it heavily depends on the parameters. The 
more stringent they are set, the smaller the lists Li will be and the faster the 
algorithm will run. Further speed-ups are possible, but not needed for the 
experiments reported in this paper. Therefore we will not go into these here.  

The Spellman dataset was used as a benchmark to test the performance of 
our method.  Since this dataset and the yeast cell cycle have extensively been 
studied before [7,8], it is ideally suited for testing the reliability and biological 
relevance of the predictions. We were able to reconstruct 4 important modules 
known to be involved in cell cycle and also 2 non cell cycle related modules 
without using any prior biological knowledge or prior data reduction. These 
results indicate that predictions passing the module validation step are likely to 
be biologically relevant (no false positives present). 

5. Conclusion 

The 3 data types mutually agreeing with each other on the prediction of a module 
not only results in the most reliable predictions (as was the case for the cell cycle 
related modules), but also allows correlating a set of regulators with their 
corresponding regulatory motifs and elicited profiles in a very natural and direct 
way. On the other hand, because of the restricted number of experimental data 
yet available (chip data not known for all regulators and tested in a limited set of 
conditions, expression data for specific conditions not available), and the 
questionable quality of the motif models, the presence of a signal in 1 data type 
can compensate for the lack of it in another data type, allowing still to retrieve 
the module. 

While to our knowledge this is the first time these 3 independently acquired 
data sources are exploited in such a concurrent way for module identification, 
the approach is further extendible towards any number of information sources, 
and in principle towards the use of other data types. The only condition for an 
efficient method to exist is that the constraints the gene sets have to satisfy must 
be hereditary. This extension will be the subject of future work. 
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