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Summary

In the current omics era, innovative high-throughput
technologies allow measuring temporal and condi-
tional changes at various cellular levels. Although
individual analysis of each of these omics data
undoubtedly results into interesting findings, it is
only by integrating them that gaining a global insight
into cellular behaviour can be aimed at. A systems
approach thus is predicated on data integration.
However, because of the complexity of biological
systems and the specificities of the data-generating
technologies (noisiness, heterogeneity, etc.), inte-
grating omics data in an attempt to reconstruct
signalling networks is not trivial. Developing
its methodologies constitutes a major research
challenge. Besides for their intrinsic value towards
health care, environment and industry, prokaryotes
are ideal model systems to further develop these
methods because of their lower regulatory complexity
compared with eukaryotes, and the ease with which
they can be manipulated. Several successful
examples outlined in this review already show the
potential of the systems approach for both fundamen-
tal and industrial applications, which would be time-
consuming or impossible to develop solely through
traditional reductionist approaches.

From omics data to networks, the seed of systems
biology

Recent technological advances have dramatically
changed our views on molecular biology. Whereas a few

years ago each gene or protein was studied as a single
entity, new, so-called ‘omics’ technologies [e.g. genom-
ics, transcriptomics, proteomics, metabolomics and inter-
actomics, recently reviewed by Joyce and Palsson
(2006)] allow one to analyse large numbers of genes or
proteins simultaneously (Greenbaum et al., 2001). As a
result, a gene is no longer studied as an isolated entity
but as being part of a complex network (see Box 3). In
a systems biology approach, a cell is considered as a
system that executes a genetic programme. Moreover,
this system receives dynamically changing environmen-
tal cues and transduces these signals into the observed
behaviour (i.e. change of phenotype or change of physi-
ological response). The network mediates this signal
transduction. A complete network thus consists of all
components (e.g. DNA, RNA, proteins, metabolites) in a
cell interacting with each other. Modelling the dynamic
action of these networks to predict cellular behaviour is
the ultimate goal of systems biology (Kitano, 2002; Arita
et al., 2005). This requires at first gaining insight in the
causal interactions between the molecular entities (see
Box 3) by the reconstruction of the basic network struc-
ture (also referred to as ‘scaffolds’; Joyce and Palsson,
2006) from large amounts of data (defined as top-down
systems biology, see Box 1a). Such a basic structure is
usually represented graphically, with nodes indicating
the main players in the network (proteins, genes) and
edges referring to the interactions between them (see
Box 3). Based on such basic network structures, more
detailed mechanistic models can then be compiled
taking into account dynamic behaviour (referred to as
bottom-up systems biology, see Box 1a). Although
ideally a complete systems biology flow combines both
approaches, in this review we emphasize the top-down
approach as it forms the analytical framework for the
more detailed bottom-up approach.

Top-down systems biology is increasingly relying on
the integration of heterogeneous omics data. Indeed,
using distinct data sources instead of a single high-
throughput data set to reconstruct networks has several
advantages. First, different omics data (e.g. genome
sequence, transcriptome, proteome, interactome,
metabolome) unveil distinct aspects of networks and
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integrating them leads to a more complete insight into
these networks. Second, experimental and biological
noise in the individual data measurements can be so
prohibitive that each data type alone has a limited utility.
The integration of data from different sources provides
an effective means to deal with the high noise level in

the individual data sources by lowering the false discov-
ery rate (FDR) and increasing sensitivity (see Box 1b).
Despite the advantages of data integration, inferring net-
works through integration of these heterogeneous data
remains mathematically non-trivial, as the number of
independently acquired omics experiments is usually

Box 1. Tools for data integration are based on either one of the following principles.

a. Top-down versus bottom-up inference (Palsson, 2002)

Bottom-up inference starts from a comprehensive model of known interactions between molecular entities as described in literature and
curated databases. Such models can be used to simulate cellular behaviour or to predict the outcome of a perturbation experiment.
Inconsistencies between observed data and simulations point towards deficiencies in the current network structure and outline hypotheses of
novel interactions that can better explain the observations.

Top-down inference aims at reconstructing the interactions between molecular entities based on data only, hence without using prior
knowledge on the network structure. Top-down inference is a data-demanding approach and is, given the current data availability, often
underdetermined (i.e. the network that is reconstructed from the data is not unique, many equally likely solutions can explain the observations).
However, the top-down inference can be made increasingly tractable by integrating data from different sources.

b. Sensitivity versus false discovery rate

High-throughput data are inherently noisy (low signal to noise ratio). When searching for biological relevant information from such noisy data,
trading off between reducing the number of false positives (FP) and detecting a sufficient number of true positives (TP) is essential. The false
discovery rate (FDR) is defined as the number of false positives (FP) on the total number of predictions (TP+FP), and should be kept as low
as possible. Indeed, the higher the number of false positives, the more laborious downstream experimental validation will be. Sensitivity, on
the other hand, determines the number of predicted true positives (TP) on the total number of positives [i.e. true positives and false negatives
(FN)] and is an indication of the positives missed by the prediction method. When integrating different data sets, either a very conservative or
a non-conservative prediction can be chosen depending on the final goal. A conservative prediction (low FDR, low sensitivity) requires that all
data sources agree on this specific prediction (for instance, by taking the intersection of all predictions of the individual data sources). A
non-conservative prediction considers all predictions supported by at least one data source (for instance, by taking the union of the predictions
of the individual data sets). Most implementations reconcile both extremes.

c. Global versus query-specific driven analyses

Analyses in systems biology can be both global or query driven. With global analysis, we refer to a complete analysis of all data available
without focus on any specific pathway. Such analyses are meant to discover global patterns or to gain a holistic view on the behaviour of an
organism. Besides this, it is of utmost importance for molecular biologists to query data sets, usually a combination of public and own data,
about their particular processes of interest. Query-based pattern discovery tools, for example, tools based on the concept of using prior
knowledge in the Bayesian framework, make use of this principle.

d. Supervised versus unsupervised methods

Supervised learning requires a target variable (dependent variable) that is causally dependent on other variables (explanatory variable).
Classification is an example of a supervised learning technique that is often used. For classification, the target variable is a binary class label
which can be either positive (class 1, a set of proteins known to interact) or negative (class 2, a set of proteins most likely not interacting).

Based on a set of training points for which both the target variable and the explanatory variable are known, a mathematical model can be
built to optimally predict the class membership (class 1 versus class 2) of these data points. In case of predicting protein interactions, the
explanatory variable can be data on, for example, coexpression, and the target variable consists of predicting whether two proteins interact
or not. Training themathematical model implies choosing the parameters of the model such that a maximum number of true predictions is made
for the training set, while avoiding over-fitting (optimization). The more accurate the training set, the better the model will be. Examples of
models commonly used for data integration in systems biology are support vector machines, Bayesian networks, neural networks, etc.

In unsupervised learning, all variables are treated in the same way, and no distinction is made between explanatory and dependent
variables. There is no need for a target variable and unsupervised methods (such as PCA, NCA, clustering) typically discover patterns, such
as clusters in the data sets.

When sufficiently experimentally verified data are available (e.g. the experimentally verified interactions between proteins), a target variable
can be defined. In other cases, target variables are tedious to construct. In such cases, unsupervised methods can be used. In addition, they
prevent biasing new discoveries towards prior knowledge.

e. In a sequential versus a concurrent way

In sequential analysis, one data source is used after the other, e.g. microarray data are first clustered and over-represented motifs are
subsequently searched for in the clusters of coexpressed genes using motif detection.

Concurrent analysis implies searching both data sets simultaneously. Considering the previous example, this would entail the simultaneous
search for clusters of genes and regulatory motifs. Indeed, the degree of coexpression determines the quality of the detected motifs but the
presence of motifs also confirms the reliability of the detected cluster. As both data sets mutually confirm each other, concurrent analysis is
inherently more powerful, but often requires more computational resources.
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much smaller than the number of interactions to be
inferred. This problem of under-determination is aggra-
vated by the low signal to noise level of high-throughput
data and the inherent stochasticity (see Box 3) of bio-
logical systems (Elowitz et al., 2002).

Although most of the network reconstruction
approaches are generally applicable, many of the tech-
nological developments in this area of research are
based on model organisms such as yeast (Ge et al.,
2003; Hohmann, 2005) and Caenorhabditis elegans (Ge
et al., 2003) while considerably less efforts focus on
prokaryotes. Therefore, in this microReview we focus on
prokaryotic omics data integration for network recon-
struction (for the outline see Fig. 1). We give an over-
view of diverse methods which have been applied to
infer from various omics data, structures of either the
transcriptional, protein interaction or metabolic network
and of studies that analyse the observed expression
behaviour resulting from the concerted action of these
networks (Fig. 1). These examples illustrate that
systems microbiology is a challenging research domain,
but with great potential for both fundamental and indus-
trial applications, ranging from understanding bacterial
adaptation and evolution to improved management of
bacterial infections and designing better performing
industrial strains.

Reconstruction of the network structure

Inference of the transcriptional network

Here, the causal interactions between transcriptional
regulators and their target genes are considered at the
transcriptional level. Expression-profiling experiments,
usually performed by genome-wide microarray technol-
ogy (Schena et al., 1995), measure changes in mRNA
levels, upon mutation or in response to environmental
changes. Initially, global methods (see Box 1c) were
developed to reconstruct networks based only on
microarray data (de Jong, 2002). Some of these
methods, although conceptually interesting, are very
data demanding [e.g. Bayesian networks and Dynamic
Bayesian networks (Ong et al., 2002), see Box 3]. To
reduce complexity, Gardner et al. (2003) focused on a
few genes only (query-specific analysis, see Box 1c)
instead of on the whole gene set. Using multiple linear
regression (see Box 3) they explained the influences of
perturbing the Escherichia coli DNA-damage response
pathway (SOS response) on the steady-state mRNA
levels and/or the dynamic (i.e. multiple time points)
expression changes (Gardner et al., 2003; Bansal et al.,
2006) of these query-specific genes. Within this frame-
work, the authors could unravel the molecular interaction
pathway of the SOS response mediated by RecA and

Fig. 1. Integration of omics data. Different information sources, i.e. omics data, literature and computational predictions, can be integrated to
infer the structure of the transcriptional network, the protein interaction network or the metabolic network (network structure). Besides
unravelling structures, omics data allow analysing the responses (mRNA, protein and metabolite profiles) triggered by each of these networks
and studying their mutual relation (network behaviour). The ultimate goal in data integration will be to combine the transcriptional, protein
interaction and metabolic network to construct comprehensive network models.
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LexA, and elucidate the mode of action of the used per-
turbing pharmacological compounds.

The most promising methods for inferring transcriptional
networks, however, combine microarray data with other
data sources such as literature, DNA–protein interaction
data (through ChIP-chip technology; Buck and Lieb,
2004) and/or in silico data on regulator binding sites (motif
data) (Marchal et al., 2003; Tompa et al., 2005).

A first group of such integrative methods starts by com-
piling a model based on all known evidence. Kao et al.
(2005), for instance, defined a linear static model for
which the network connectivity information (interaction
network between genes) was primarily extracted from the
regulatory motif database RegulonDB (Huerta et al.,
1998) and literature. They used network component
analysis (NCA) (see Box 3) to deconvolute the relative
contributions of the E. coli transcription factors in each
condition using microarray data (Kao et al., 2005). This
allowed the authors to demonstrate how metabolic
enzyme activity exerts feedback regulation on the cAMP
receptor protein (CRP) during carbon source transition.

A second group of integrative methods is data driven. In
contrast to the previous class of methods which are model
based, data-driven approaches are not confined to what is
previously known. Data-driven integration of ChIP-chip
and genome-wide expression data in bacteria thus far
relies on intuitive approaches. One such approach iden-
tifies the relevant features (genes in this case) in each
data set independently, and subsequently looks for fea-
tures in the cross-section of these multiple data sets. Laub
et al. (2002) were the first to use this approach to study
the role of the Caulobacter master regulator CtrA in the
dynamic expression changes during the cell cycle. In
another approach, transcriptionally related data sets are
combined in a sequential way (see Box 1e): in silico motif
detection is applied to the targets identified by bacterial
ChIP-chip assays analogous to the use of motif detection
algorithms on clusters of coexpressed genes. In this way,
hypotheses are generated that make the mode of regula-
tion of the newly identified target genes more amenable to
detailed molecular analysis. This was shown for the
regulon of Rhodobacter sphaeroides photosynthesis
regulators (Mao et al., 2005) and that of LexA, a master
regulator of the SOS response in E. coli (Wade et al.,
2005). Moreover, these studies rendered new global
insights in prokaryotic transcription. For instance, the
study on LexA binding revealed how in E. coli, unlike in
eukaryotes, the transcription factor association with DNA
is not controlled by DNA accessibility (Wade et al., 2005).
Additionally, several non-consensus target sites seemed
to be truly bound by the regulator in vivo, but not in vitro
(Laub et al., 2002; Wade et al., 2005).

A more advanced method was developed by Zwir et al.
(2005) who used an unsupervised method (see Box 1d)

that groups co-regulated promoters in E. coli and Salmo-
nella enterica based on gene expression data and a
number of promoter-related features derived from
amongst others RegulonDB, such as location and orien-
tation of binding sites for a regulatory protein. Application
of this method uncovered new members of the PhoP
regulon and interactions of the PhoPQ regulon with other
regulatory systems that were not discovered before.

Other methods, called module detection methods, aim
at detecting from large genome-wide data compendia,
gene sets which are coexpressed under a particular set of
experimental conditions together with their corresponding
regulators and transcription factor binding sites (Bar-
Joseph et al., 2003; Segal et al., 2003; Tanay et al., 2004;
Lemmens et al., 2006). Such so-called modules can be
seen as a simplified representation of the transcriptional
network. Most module detection methods are based on
the concurrent analysis (see Box 1e) of diverse transcrip-
tionally related data sources such as ChIP-chip, microar-
ray and motif data and are currently being applied to
prokaryotic data.

Studies on genome-wide transcriptional regulatory net-
works already revealed several intriguing structural and
dynamic features of gene expression at a systems level
(see Box 2).

Inference of the protein interaction network

Protein complexes can have a structural or an enzy-
matic function, or they can form regulator complexes
involved in transcriptional regulation and, as such, link
the protein interaction network to the transcriptional
network. Defining the interactions among proteins is
essential, because they play a role in virtually all biologi-
cal processes. For example, exterior signals are trans-
duced to the inside of a cell by protein–protein
interactions of the signalling molecules. Exploring
protein–protein interaction maps not only allows predict-
ing protein function, based on the homology of the inter-
acting proteins with characterized proteins in another
species (Rain et al., 2001), but also revealing biological
pathways. For instance, Noirot-Gros et al. (2002) could
relate DNA replication with recombination/repair func-
tions and signalling pathways. Moreover, protein interac-
tion maps of human pathogens reveal clues on putative
drug targets by providing insight into proteins functioning
together during pathogenesis. Finally, genome-wide
mapping of protein–protein interactions proved to be
powerful in providing insight into the overall topology of
a microbial network (Butland et al., 2005). The E. coli
protein interaction network seemed to be ‘scale-free’
with a few highly connected ‘hubs’ but with most of the
proteins having few interacting partners. Protein connec-
tivity of a hub was positively correlated with the number

1242 S. C. J. De Keersmaecker, I. M. V. Thijs, J. Vanderleyden and K. Marchal

© 2006 The Authors
Journal compilation © 2006 Blackwell Publishing Ltd, Molecular Microbiology, 62, 1239–1250



of phylogenetic lineages in which its orthologue was still
present (Butland et al., 2005).

Experimental protein interaction data are mainly based
on two distinct technologies each of which detects
complementary interaction types (Uetz and Finley, 2005).
Yeast two-hybrid systems unveil physical interactions
while mass spectrometry (MS) identification of proteins
that coaffinity purify (co-AP) with a bait protein identifies
stable complexes (functional interactions).

Besides these technologies, which give direct evidence,
potential protein interactions can be predicted by using
supervised techniques (see Box 1d) from other data sets
as well, for instance, from microarray expression experi-
ments (interacting proteins appear to be highly coex-
pressed), genome context [phylogenetic profiles (Wu
et al., 2003), gene fusion, gene proximity], and the
involvement of proteins in the same pathway, etc. (Snel
et al., 2000; Janga et al., 2005) (as is shown by the many
examples in yeast; Lu et al., 2005). However, so far only
a fraction of the experimentally detected interactions
could be readily predicted in E. coli using phylogenetic
profiles or gene proximity criteria, e.g. only 3.4% of the
interacting proteins were encoded by genes located within
500 bp of each other on the E. coli chromosome (Butland
et al., 2005). Including other relevant features and inte-
grating them in a single predictive model rather than using
each of them separately could increase the predictions’
reliability and coverage, though.

Inference of the metabolic network

Metabolic pathways have mainly been described by
detailed deterministic or stochastic models consisting of
non-linear ordinary differential equations (Michaelis
Menten, S-systems, see Box 3) of which the structure is
determined by previous knowledge on the pathway of
interest (bottom-up models, see Box 1a). However, such
models require knowledge of many parameters, such as
enzyme kinetics, intracellular substrate concentrations,
etc. The lack of experimental techniques to measure all
these parameters at high-throughput level and the math-
ematical complexity of the problem restrict such models to
small gene sets (Arita et al., 2005). Genome-scale models
of microbial metabolism can be constructed by reducing
these highly non-linear models to linear static systems
(Covert et al., 2001a). In silico analysis of such metabolic
networks uses a constraints-based approach. These con-
straints correspond to properties that limit the possible
behaviours of the network and, thus, restrict the solution
space. Examples of such constraints are thermodynamic
constraints (irreversibility of reactions), capacities
(such as maximum uptake rate of a transporter) and
stoichiometries. Experimental data on flux levels, based
on 13C-labelling of substrates and isotopomer distribution
analysis by two-dimensional nuclear magnetic resonance
(2D NMR), gas chromatography-mass spectrometry
(GC-MS) or liquid chromatography-mass spectrometry

Box 2. Integration of omics data to gain insight in network topologies.

Below we give an illustrative example of how network reconstruction can be used to gain insight into fundamental biological questions. It shows
how, based on the statistical analysis of inferred network topologies, basics of signal processing in bacteria and evolution of regulatory
networks can be explained. Shen-Orr et al. (2002) were the first to reconstruct the topology of the E. coli transcriptional network based on data
available in RegulonDB. According to their results, the global network structure has a modular composition, decomposable into several basic
network motifs [feed-forward loops, single input module (SIM), etc.]. These network motifs are topologically distinct regulatory interaction
patterns that are present more frequently in true biological networks than in random networks. These motifs are postulated to be the basic
signal transduction elements, each with their own characteristic properties. A coherent feed-forward loop would be involved in filtering input
signals by rejecting transient signals (Shen-Orr et al., 2002). A SIM is defined by a set of operons regulated by the same transcription factor
that either function stoichiometrically or that are involved in the same metabolic pathway. Interestingly, small differences in the activation
thresholds of the gene transcription by the common regulator can trigger a co-ordinated temporal response in the SIM output (Kalir and Alon,
2004). However, rather than ascribing the dynamic properties of the whole network to individual motifs, Dobrin et al. (2004) suggest a more
complex model: single motifs would almost never occur in isolation but aggregate into homologous motif clusters that largely overlap with
biological functions. In turn, these motif clusters coalesce into superclusters that define the global statistical properties of the whole network.
Ma et al. (2004), who extended the transcriptional regulatory network of E. coli generated by Shen-Orr et al. (2002), found, however, that most
of the motifs are connected to form a giant motif cluster instead of forming several small disconnected clusters.

By relating the network topology with microarray data obtained in several conditions, Balazsi et al. (2005) were able to propose a model for
transcriptional signal transduction in bacteria. Complex environmental signals would be decomposed by the cell into elementary perturbations
processed by individual origons. These represent regulatory subnetworks that originate at distinct classes of sensor transcription factors, i.e.
an environmental signal-affected transcriptional subnetwork consisting of a set of operons regulated directly or indirectly by a single
transcription factor that is not regulated transcriptionally by any other transcription factor. The final response develops by reassembling the
elementary perturbations near the output of the network.

These regulatory networks and their topological properties have been the subject of different evolutionary studies. Babu et al. (2006), for
instance, analysed conservation patterns of the E. coli transcriptional network (Shen-Orr et al., 2002) across 175 prokaryotic genomes. Natural
selection appears to modify individual interactions to arrive at an optimal design for a given organism, rather than preserving whole blocks of
pre-existing transcriptional interactions (Babu et al., 2006). Orthologous genes can become part of a different motif type in the regulatory
network when a specific transcription factor in the species of origin is lost or gained, often in adaptation to a new environment. This might
explain why distantly related organisms, but with similar lifestyle, tend to conserve network motifs.
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(LC-MS) (Emmerling et al., 2002; Sauer, 2004; Wang
et al., 2006), can also be used to set these constraints.
The optimal steady-state solution of the metabolic flux
given a certain growth state, metabolite production or
yield (defined as ‘objective function’) should lie in this
constrained solution space and is detected by linear opti-
mization (see Box 1d) (called flux balance analysis, FBA).
Such models can successfully predict the effects of gene
knockouts and allow quantitative dynamic simulation of
substrate uptake, cell growth, etc. (Covert et al., 2001a;
Price et al., 2004). These models and simulations hold
great promise for future biotechnology applications. The
benefits of systems biology for metabolic engineering,
which uses knowledge about metabolic networks to ratio-

nally improve industrial useful strains (i.e. higher yield with
lower fabrication costs), were recently exemplified by
Teusink and Smid (2006) for lactic acid bacteria.

Analysis of the observed behaviour triggered by the
different networks

Cellular behaviour results from the action of and inter-
play between the distinct networks. Therefore, besides
inferring network structures at each of the individual
molecular levels, studying and comparing the responses
triggered by these different networks (e.g. transcriptome,
proteome, metabolome) and their interrelation is of
major interest.

Box 3. Glossary.

Interaction: In the context of this review an interaction refers to the connection between molecular entities, and corresponds to an edge in the
graph-based representation. Depending on which molecular entities are referred to and the experimental procedures used to measure them
(see Appendix S1), the interaction can either refer to a physical interaction (DNA–protein interactions in the transcriptional network,
protein–protein interactions in the protein interaction network), or refer to a potential causal relation in the absence of direct physical
measurements (for instance, the feedback of a metabolite on transcriptional regulation or the sequence of metabolic enzymes in a metabolic
pathway in which the output of one enzyme serves as input for the subsequent enzyme). For an overview of different technologies to measure
direct physical interactions between molecular entities we refer to Ge et al. (2003), Buck and Lieb (2004), Uetz and Finley (2005), Joyce and
Palsson (2006) and Supplementary material.

Molecular entities: In the context of this review, mainly referred to as genes, proteins, metabolites. However, other molecular entities exist,
such as small regulatory RNA molecules.

Multiple linear regression: Multiple linear regression attempts to model the relationship between two or more explanatory variables and a
dependent variable by fitting a linear equation to the observed data.

Network: In the context of this review, it refers to the structural scaffold of a biological pathway or regulatory network. It consists of edges and
nodes. Depending on which network is referred to, the nodes can be either proteins (protein interaction network), enzymes (metabolic pathway
such as in KEGG) or regulators and targets genes (transcriptional network). Edges represent the interactions between the nodes (see also
definition ‘interaction’). A comprehensive network model refers to a structural network in which the protein interaction, transcriptional and
metabolic network are combined into one global representation.

Network, Bayesian: A Bayesian network is a probabilistic graphical model that generally specifies the likelihood of an observation occurring,
on the basis of the presence of various characteristics that are known or assumed to be associated with the observation according to prior
information (Joyce and Palsson, 2006). It consists of a directed acyclic graph of nodes which indicate variables and edges which indicate
probabilistic dependency relations among the variables. In the context of network inference, the nodes of a Bayesian network often represent
the molecular entities and the edges the interdependencies between them (see also definition network).

Network component analysis (NCA): Network component analysis (NCA) is a method to reconstruct transcription factor activities and
connectivity strengths based on microarray data and partial network connectivity knowledge. In contrast to methods such as PCA (see also
definition PCA), NCA takes advantage of partial network connectivity knowledge and is therefore able to better predict biologically meaningful
signals. For example, if a regulatory node or factor is known from experimental evidence to have negligible or no effect on an output signal,
then the corresponding edge may be removed or, equivalently, its weight may be set to zero. Such qualitative knowledge for a number of large
biological systems is becoming available through high-throughput experiments. In contrast, traditional methods such as PCA depend purely
on statistical assumptions and the resulting decomposition does not necessarily contain physically or biologically meaningful signals (Liao
et al., 2003).

PCA: Principal components analysis (PCA) is a linear transformation that transforms the data to a new co-ordinate system such that the
greatest variance by any projection of the data comes to lie on the first co-ordinate (called the first principal component), the second greatest
variance on the second co-ordinate, and so on. PCA can be used for dimensionality reduction in a data set while retaining those characteristics
of the data set that contribute most to its variance, by keeping lower-order principal components and ignoring higher-order ones.

Stochastic: From the Greek ‘stochos’. A stochastic process is a process in which a transition depends on a previous state with a certain
probability. There exists a chance that the transition does not occur. Probabilities and randomness are thus involved. This is in contrast to a
deterministic process where the transition will most certainly occur.

S-system: S-systems (synergistic and saturable systems) are a set of non-linear ordinary differential equations which are in the context of this
review used to represent biochemical interactions between genes. S-systems have unique mathematical properties that permit the investi-
gation of rather large, realistic phenomena such as large networks. S-systems are derived from generalized mass balance equations, in which
aggregates of all inputs and outputs are approximated by products of power-law functions. Justified by their mathematical derivation, S-system
models can be designed directly from the topology of a network by including those and only those constituents in a power-law term that have
a direct influence on a particular influx or efflux (i.e. the network needs to be known a priori) (Voit, 1992).
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Several studies correlate transcriptome and proteome,
either on a limited (e.g. analysis of an L-threonine over-
producing E. coli strain; Lee et al., 2003) or a more
exhaustive scale. Corbin et al. (2003) for instance identi-
fied one-fourth of all E. coli proteins and discovered a
positive relationship between protein and transcript abun-
dance during exponential growth on glycerol.

Integration of expression data (at mRNA or protein
level) with the metabolome often implies relating results
from expression analysis to pathway databases. Becker
et al. (2006) integrated in vivo generated phenotypic
data on metabolic gene mutants and proteome data to
search in a rational way for essential metabolic enzymes
that represent potential antibiotic targets in S. enterica.
Metabolic enzymes essential for virulence were identi-
fied using published metabolic mutant phenotypes (if the
inactivation of an enzyme resulted in a significant
attenuation of the wild-type virulence phenotype, it was
considered essential), and comparative genomics (i.e. if
metabolic genes appeared non-functional in other sero-
vars, e.g. pseudogenes or missing, they were consid-
ered dispensable for virulence). Indirect information
regarding additional enzymes with related biochemical
functions was obtained by assuming that all non-
redundant enzymes involved in pathways containing
essential enzymes were also essential. To this end a
graphical metabolic network model for Salmonella
was constructed, based on the genome sequence
(McClelland et al., 2001) and the EcoCyc and EcoSal
databases (see Table S1). When combining the com-
piled list of enzymes with in vivo protein expression data
that profile enzymes effectively present during in vivo
infection, it appeared that most of these enzymes were
non-essential during in vivo virulence. Moreover, the
essential enzymes which were expressed were almost
exclusively associated with a small subgroup of path-
ways. This drastically reduces the pool of possible new
antibiotic targets. It is a nice example of how integrating
different data sources can size down the number of can-
didate target enzymes to a more manageable number
for further testing.

An increasing number of studies correlate patterns
of gene expression with the production of specific
metabolites. Measurement of metabolites gives informa-
tion on how functional proteins act to transform energy
and process materials. Krömer et al. (2004) studying
lysine production in Corynebacterium glutamicum or
Lafaye et al. (2005) studying the yeast sulphur pathway
integrated metabolite profiles and metabolic fluxes with
high-throughput transcriptomics or proteomics data,
respectively, to identify correlations between expression
and in vivo enzyme activity. These studies revealed that,
depending on the growth conditions, the maximum flux of
some enzymes correlated either positively (Krömer et al.,

2004; Lafaye et al., 2005) or negatively (Lafaye et al.,
2005) with maximum gene expression. For other
enzymes, gene expression remained unaffected, despite
increased fluxes, indicating that the metabolic capacities
of these enzymes were not limited by their mRNA levels
(Krömer et al., 2004). These studies demonstrate that the
combination of different profiling techniques (metabo-
lome, fluxome, transcriptome, proteome) provides
detailed quantitative information on a biological network
and can therefore help identify the key genes for strain
improvement.

Need for a comprehensive network

Because of the computational complexity, efforts to infer
the complete molecular network at all its levels in a con-
current way (see Box 1e) and to represent it in a com-
prehensive way are still under development. Covert
et al. (2004) constructed the first integrated genome-
scale model of the transcriptional and metabolic network
in E. coli based on a compilation of known interactions.
Metabolic interactions are based on a linear static model
and regulatory interactions are imposed by logic state-
ments that simulate the effect of regulatory processes
over time. The model contains 1010 genes, of which 479
are regulators. Simulation parameters were estimated
based on FBA (Covert et al., 2001b). Covert et al.
used high-throughput experimental growth phenotyping
[ASAP data (Bochner, 2003; Glasner et al., 2006), see
Table S1 in Supplementary material] and gene expres-
sion experiments (see Table S1 in Supplementary mate-
rial) to assess the biological relevance of their model.
Despite the linearity of their model, the predicted growth
phenotypes agreed with the experimental ones in 79%
of the cases and the model could predict the gene
expression data with 49% accuracy and 15% coverage
(Covert et al., 2004; Barrett et al., 2005). The model also
identified previously unknown components and interac-
tions in the networks, systematically generating hypoth-
eses to be tested in newly designed informative
experiments.

Barrett et al. (2005) used the comprehensive inte-
grated metabolic and transcriptional E. coli model of
Covert et al. (2004) to assess the global characteristics
of all functional states computed in the 15 580 growth
conditions the network can exhibit. Each functional state
was described by an activity profile that contains both
the calculated expression state of each gene and the
logical interactions between all transcription factors and
the genes they are known to regulate. They showed by
clustering and dimensionality reduction (PCA, see
Box 3) of these profiles that the set of all possible
network states has only a few dominant modes that are
organized according to the terminal electron acceptor
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and the availability of glucose or gluconate as carbon
sources. Relatively few transcription factors (FNR, Arc,
i.e. the global regulators or hubs) are required to explain
these dominant modes.

Research challenges for data integration

Top-down systems biology aims at inferring network struc-
tures from high-throughput omics data. It offers the struc-
tural backbone of a more far-going systems biology
approach in which a full mechanistic network model is
aimed at that is able to predict the overall cellular
behaviour.

A first prerequisite of successful systems biology is the
generation of the data. Developments in high-throughput
technology are still ongoing at increasing pace. Solving
technical bottlenecks, among which the measuring of bio-
chemical parameters at single cell level, constitutes a
research challenge on its own as is outlined in the recent
report from the American Academy of Microbiology (AAM)
(Buckley, 2005).

Despite these technological issues, the amount of
omics data is steadily increasing. Therefore, the need for
computational platforms that generate comprehensive
biological insights from these data becomes urgent.
Lately much effort has been put into developing algo-
rithms and tools for integrative network reconstruction.
Available methods differ from each other in the way they
approach the data [supervised versus unsupervised
(Box 1d); global versus query specific (Box 1c); sequen-
tial versus concurrent (Box 1e)]. Developing such biologi-
cally relevant data integration tools remains one of the
major future challenges in bioinformatics research:
accounting for both the biological aspects and data-
related aspects is a non-trivial task. At first, each tool
relies on an underlying model that represents biological
reality. Designing this model implies including sufficient
complexity to capture in a comprehensive and intuitive
way different aspects of the biological system (such as the
different molecular levels and interactions between them),
but it requires at the same time imposing sufficient con-
ceptual simplifications to keep the solution computation-
ally tractable. The probabilistic methods of Segal et al.
(2003) are a nice example of such well-designed models.

Second, the algorithms that fit these models also have
to take into account the specificities of high-throughput
data. These data are inherently noisy. Although some
consistent sources of variation can be removed in
advance by proper pre-processing (van Hijum et al.,
2003; Leung and Cavalieri, 2003; Engelen et al., 2006),
a residual noise level due to biological stochasticity or
experimental error will always remain. Algorithms should
take into account estimates of the noise levels on each

of the individual data sources and trace how they influ-
ence the reliability of the final predictions. Experiment
design tools should exploit the information on how the
noise propagates from the initial data source to the final
result in order to predict which experiment can further
improve reliability of certain predictions (Ideker et al.,
2000).

Also, most high-throughput data are condition depen-
dent and usually only give a snap shot of the molecular
entities being present and/or interacting at a specific
moment. High-throughput data are thus incomplete and
exhibit many missing or unobserved data. As a result, only
when data sources are perfectly synchronized in time or
condition, they are expected to agree with each other.
When extrapolating the information to other conditions,
agreement between data sources can confirm an interac-
tion but observing a conflict does not indicate a flaw. Most
of the algorithms developed so far do not take into
account such data directionalities during inference. These
and many other data properties determine the specificities
of the models and algorithms to choose. Therefore, close
interaction with biologists and awareness of the intricacies
of their data will be crucial to guide bioinformaticians in
building appropriate and useful tools.

The downside of trying to build more and better tools is
that they become less accessible to biologists. Biologists
are overwhelmed with an ever-increasing number of tools
with a lack of guidance on which one performs best. For
instance, it appears that distinct methods dealing with the
same problem give different results with few or no overlap
(Lemmens et al., 2006). This does not necessarily impli-
cate that (one of) the used methods do(es) not work but
rather that depending on the properties of the tool, other
aspects of the data sets are emphasized. Benchmarking
methods before applying them on data to be analysed
helps understanding the limits and possibilities of a tool.
However, this is not trivial as no single biological network
has yet been completely characterized. Comparison with
a standard of known interactions allows one to assess the
sensitivity of a method (recovery rate of true positives, see
Box 1b) but does not penalize the presence of false
positives. Moreover, as tuning algorithmic parameters
usually comes down to trading off between sensitivity and
detection of false positives (FDR), most algorithms have
parameter settings in which the sensitivity is 100% at the
expense of a very high false detection rate (FDR). The
use of simulated data, although only a weak reflection of
real biological data, remains important to get familiar with
a tool (Albers et al., 2006; Van den Bulcke et al., 2006). So
despite all the efforts in providing user-friendly platforms
for data analysis (e.g. Thijs et al., 2002; Xia et al., 2005)
extracting useful information by applying complex tools
usually requires, besides some basic knowledge of the
underlying statistics, lots of user-experience.
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Another critical need for data integration is a central-
ized, curated database to enable rapid submission and
retrieval of data and to expedite access to information
from diverse areas of research (Buckley, 2005). As
exemplified by Table S1 (Supplementary material),
repositories of public prokaryotic high-throughput data,
at the different molecular levels, are scarce. This in con-
trast to yeast, where already from the very beginning,
data were publicly shared with the community. However,
the current policy of most journals to release high-
throughput data sets will get prokaryotes abreast.
Another drawback is that most databases are biased
towards well-studied pathways. The potential of systems
biology lies in concerted research efforts that focus on
all pathways in one particular organism (e.g. the Inter-
national E. coli Alliance; Mori, 2004). Besides this, some
important molecular entities are not yet sufficiently
covered with high-throughput data. Recording the
expression behaviour of regulatory small non-coding
RNAs (sRNAs) (Masse et al., 2003; Vogel et al., 2003;
Gottesman, 2005), for instance, will become as impor-
tant as recording mRNA expression profiles in under-
standing how cells modulate gene expression. Densely
tiled arrays having probes covering all intergenic and
antisense regions of a genome, in combination with
alternative labelling methods to cope with their small
size and structure, hold great promise for small RNA
detection (Hu et al., 2006). The same goes for profiling
post-translational modifications. Although some methods
allow detecting post-translational modifications (Van den
Bergh and Arckens, 2005), these are not as widely
adopted for prokaryotes as for yeast (Ptacek et al.,
2005). Other omics data, such as metabolomics data,
are not exploited to their full potential yet. Metabolome
databases are still under development (Schauer et al.,
2005) and available metabolite definitions are still non-
reconciled with metabolite profiles (Kopka, 2006).

Once these data are generated, they should be stored
in the proper layout for easy access. To this end, a set of
quality standards and rules for cataloguing information
are needed. Besides MIAME (Brazma et al., 2001), an
established set of recommendations for the submission of
microarray data, other standardizations are being devel-
oped, e.g. the Systems Biology Markup Language
(SBML). For a complete overview on standards for
systems biology we refer to Brazma et al. (2006) and the
AAM report (Buckley, 2005).

Prokaryotes as inciters for data integration

Aiming at reconstructing a complete structural model of
regulatory networks, top-down systems biology is based
on the integration of data gained at different molecular
levels. However, the complexity of biological systems in

combination with the characteristics of omics data
renders this data integration non-trivial. Currently devel-
oped methodologies are not yet able to take into
account all of the intricacies of true biology. As prokary-
otes are considered ‘simpler’ from the viewpoint of regu-
latory complexity, they are, as is illustrated by the
examples in this review, powerful model systems to
further develop systems biology tools, with impact
beyond the microbial life. More importantly, systems
microbiology will also have a value on its own, by paving
the way in unravelling molecular mechanisms and with
many applications in, for example, metabolic engineer-
ing and health care.
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