
The insight that genes and proteins do not work in isola-
tion but act together in intricate networks has launched 
the era of systems biology1,2. In bacteria, regulation at the 
transcriptional level is pivotal to guaranteeing metabolic 
flexibility and cellular integrity1,2. In Escherichia coli the 
transcription-regulatory network (TRN) was shown to 
be composed of basic modular components that con-
tribute to the specificities of global response dynam-
ics, for example by speeding up cellular responses or 
making them more robust (that is, able to respond to 
a wide range of environmental signals)3,4. Deciphering 
the gene co-expression network and the TRN (BOX 1) 
is therefore crucial to understanding bacterial cellular 
behaviour. The number of computational methods that 
are being developed to reconstruct TRNs from genome-
wide expression data is rapidly increasing; here, these 
methods are referred to as expression-centred meth-
ods. Module inference methods, which focus on the 
co-expression network, rely on the guilt-by-association 
principle to identify functional relationships between 
genes, searching for gene sets or modules that exhibit a 
similar expression behaviour across experimental con-
ditions (BOX 1). Methods that infer TRNs go one step 
beyond and infer causality relationships in the network 
by also identifying the transcriptional programmes of 
the genes or modules, to describe how transcription fac-
tors (TFs) cause the observed changes in expression of 
their cognate target genes (BOX 1).

Applying these inference procedures on public data 
sets of well-studied model organisms has considerably 
improved our global understanding of TRNs. In bacteria, 

simple regulons that comprise only a few operons show 
expression modularity. The operon organization seems 
crucial for preserving this modular level of co-expression 
under some conditions, whereas under other conditions 
the presence of intra-operonic promoters breaks up the 
modularity5–7. In addition, complex regulation involv-
ing multiple regulators generally results in single genes 
showing highly specific expression behaviour that is not 
shared with other genes8. By focusing on the role of the 
regulatory programme in E. coli, it was observed that 
not only global TFs but also local regulators respond to a 
range of conditions9. In addition, many TFs are active in 
similar conditions and thus trigger similar sets of genes, 
suggesting either redundancy in their function or an 
intricate cooperation between different TFs to mediate 
a common response9.

Several notable examples have set the stage for adopt-
ing inference methods in daily laboratory practice. The 
unprecedented link between protein mistranslation 
and the reaction to reactive oxygen species in response 
to antibiotics treatment was unveiled by combin-
ing network inference with experimental evidence in 
E. coli 10. Similar approaches were used to unravel the 
complex network regulating host–pathogen interac-
tions in Salmonella enterica subsp. enterica serovar 
Typhimurium11 and to chart the transcriptional network 
of the archeon Halobacterium salinarum for the first 
time12. Computationally inferred interactions therefore 
offer a useful resource for putting experimental findings 
into a more global context, by finding novel interactions 
that have yet to be unveiled, by unfolding links between 
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Module inference
Identifying groups of 
co-expressed genes from  
gene expression data using 
clustering or biclustering 
algorithms. 

Guilt-by-association 
principle
The assumption that genes 
with similar functions exhibit 
similar expression patterns. 
This allows the function of an 
unknown gene to be inferred 
from the function of annotated 
genes that are co-expressed 
with the unknown gene.

Advantages and limitations of current 
network inference methods
Riet De Smet and Kathleen Marchal 

Abstract | Network inference, which is the reconstruction of biological networks from 
high-throughput data, can provide valuable information about the regulation of gene 
expression in cells. However, it is an underdetermined problem, as the number of interactions 
that can be inferred exceeds the number of independent measurements. Different 
state-of-the-art tools for network inference use specific assumptions and simplifications to 
deal with underdetermination, and these influence the inferences. The outcome of network 
inference therefore varies between tools and can be highly complementary. Here we 
categorize the available tools according to the strategies that they use to deal with the 
problem of underdetermination. Such categorization allows an insight into why a certain 
tool is more appropriate for the specific research question or data set at hand.
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Expression modularity
Refers to the modular structure 
of the co-expression network. 
This network can be broken 
down into modules, or groups 
of co-expressed genes, the 
function of which can be 
separated from that of other 
modules.

Top-down network inference
Reverse engineering or de novo 
reconstruction of the structure 
of biological networks on  
a genome-wide scale by 
exploiting high-throughput 
data. By contrast, bottom-up 
regulatory network inference  
is the construction of a 
quantitative model from  
the data using a known, 
mathematically formalized 
connectivity network as  
input; estimating the kinetic 
parameters of this model  
from the data allows the 
dynamic behaviour of the 
network to be modelled.

the pathway under investigation and other cellular proc-
esses or by identifying the conditions under which a 
regulator of interest is active.

To guide users in choosing the most appropriate net-
work inference tool for their own application, we pro-
vide a scheme that allows state-of-the-art transcriptional 
inference methods to be classified on the basis of the 
strategies used to solve the inference problem, focusing 
mainly on top-down network inference methods. In con-
trast to previous categorizations, our classification uses 
a combination of criteria that relates directly to the bio-
logical interpretation of the outcome rather than being 
merely data set related13 or computationally focused14,15. 
we use representative tools of each class to show how 
using different strategies results in inferring different 
types of interactions. we also describe how to interpret 
benchmark studies. Finally, we give a perspective on 
the future of these inference tools in light of novel data  
generation procedures.

Inferring TRNs is an underdetermined problem
under the assumption that each gene is regulated by 
only one regulator, inferring the interaction network 
in E. coli would require the individual links between 
approximately 4,500 genes and each of the 300 known 
and predicted regulators to be assessed16, a total of 
1,350,000 (that is, 4,500 × 300) tests. when also tak-
ing into account the existence of combinatorial regu-
lation and feedback loops, the theoretical number of 

combinations can no longer be exhaustively enumerated.  
This means that the number of possible solutions is 
prohibitively large, and clever algorithms or optimization 
strategies are needed to screen them in a time-efficient 
way. In addition, module inference (finding the best 
combination of genes and conditions that define a 
co-expressed gene set according to preset criteria) is 
prohibitively complex. The large number of possible 
solutions (the large search space), together with the 
restricted number of independent data points and  
the low information content of the available data17–19, turns 
TRN and module inference into an underdetermined 
computational problem with many possible solutions, 
all of which explain the data equally well but only one of 
which can be the biologically true solution. 

extracting general tendencies from inference results 
(for example, assessing the number of genes that exhibit 
a modular expression behaviour or the differences in 
regulon size) can be better supported, statistically, than 
strongly emphasizing the individually inferred interac-
tions. However, it is exactly these individual interactions 
that wet-laboratory researchers are interested in.

Strategies to deal with underdetermination
The problem of underdetermination relates to the size 
of the search space: the larger the search space, the 
larger the complexity of the inference problem and  
the more difficult it will be to find the unique solution 
that approximates the biological truth. To tackle this 
problem of underdetermination, module and network 
inference methods adopt different strategies to reduce 
the search space and/or extend the amount of independent 
information (FIG. 1).

‘Conceptualization by simplifying biological reality’ 
is a commonly used strategy that renders network 
inference more tractable. TRNs have been shown to be 
modular in structure20, which implies that the network 
consists of overlapping modules of functionally related 
genes. Genes belonging to the same module act in con-
cert under certain environmental cues21–23, explaining 
their coordinated expression behaviour. Modules 
are identified by methods that rely on clustering or  
biclustering24. Module-based network inference proce-
dures, which are primarily designed to infer transcrip-
tional programmes, assign a regulatory programme to 
these modules, rather than assigning an individual pro-
gramme to each single gene, as is the case with direct 
network inference methods. This drastically lowers the 
number of interactions that must be evaluated during 
the inference pro cess. Another simplification relates 
to the definition of combinatorial regulation, in which 
multiple regulators act together to mediate specific 
condition-dependent responses. Inferring a transcrip-
tional programme that uses combinatorial regulation 
means that all possible combinations of regulators and  
binding modes (that is, cooperative, synergistic and so 
on) must be evaluated in order to explain the observed 
expression behaviour. As this is computationally intrac-
table for large data sets, all large-scale network infer-
ence methods make an approximation of combinatorial  
regulation.

 Box 1 | Co-expression networks versus transcription-regulatory networks

co-expression network
This is a network representation  
in which the nodes represent the  
genes and the edges represent  
the degree of similarity in the 
expression profiles of the genes (see 
the figure, part a). Cliques or highly 
connected subgraphs correspond to 
modules of co-expressed genes. The 
edges are undirected, indicating that 
they represent only a correlation or 
dependency relationship between 
the nodes and do not reveal the cause 
of the relationship.

Transcription-regulatory network
This is a bipartite graphical network 
representation in which the nodes 
represent either transcription factors 
(TFs) or target genes (or modules) (see 
the figure, part b). Edges are directed, 
as they reflect a causal relationship: 
they indicate that an observed 
correlation in the expression patterns 
of two nodes is caused by  
a node corresponding to a TF 
regulating a node corresponding to  
a target gene. A transcriptional 
programme corresponds to a set of 
TFs sharing the same set of target 
genes, ideally under a similar subset 
of conditions.

Co-expression networka

b Transcription- 
regulatory 
network

Gene

Transcription factor

Regulation edge

Co-expression edge
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Global

Optimization strategy 
A strategy used to screen  
the search space so that the 
optimal (or almost optimal) 
solution can be found without 
having to evaluate all possible 
solutions.

A second strategy relates to extending the expression 
data with other available information. Integrative meth-
ods combine the expression data with complementary 
data describing the TRN from a different angle, such as 
chromatin immunoprecipitation-on-chip (ChIP-chip) 
data or motif data, and these methods often obtain more 
reliable interactions and a more complete picture of the 

network. Moreover, during the search, prioritizing pre-
dictions for which the independent data sources agree 
allows the search space to be traversed more efficiently.

As a third strategy, query-driven methods reduce the 
search space by intentionally restricting the number of 
interactions that needs to be evaluated: instead of search-
ing for a global pattern, as global inference methods do, 
query-driven methods concentrate their search on a pre-
defined set of core genes or on a subnetwork of interest, 
and they then expand on this core gene set or subnetwork 
given the available data.

A fourth strategy is to use supervised (and semi-
supervised) methods, which treat network inference 
as a classification problem and can be considered to be  
a specific way of exploiting known information in a 
query-driven manner.

As each strategy uses different assumptions and poses 
different constraints, the specific strategy or combina-
tion of strategies that are adopted determine the type 
of interactions that can be found. This is shown below, 
using results obtained from state-of-the-art inference 
tools that have successfully been applied to microbial 
data sets. For an algorithmic description of the inference 
tools mentioned below, see BOXes 2,3.

Module-based versus direct network inference. usually, 
a biclustering method is used for module inference24. 
Most module-based network inference methods also use 
module inference based on biclustering as a first step, 
before the assignment of the transcriptional programme. 
exploiting the concept of modularity offers advantages 
from both the biological and the statistical points of 
view. Most module-based approaches not only predict 
regulatory interactions, but also identify the experimen-
tal conditions under which the predicted interactions 
take place. This information can be helpful for design-
ing the appropriate conditions under which experi-
mental validation of the predicted interactions should 
be performed8,25. Assuming that modularity exists also 
contributes to the statistical robustness of the inferred 
interactions: each of the co-expressed genes in a module 
confirm the data for the other genes in that module by 
providing evidence for a certain regulatory programme, 
whereas for direct methods the evidence for a particular  
regulator–target interaction is based on only a single-gene 
observation.

A comparison of the results from the direct net-
work inference method ClR (context likelihood of 
relatedness) and the module-based method Stochastic 
leMoNe (learning module networks) shows how adopt-
ing the concept of modularity determines the interac-
tions that can be inferred (BOX 2; FIG. 2). By exploiting 
modularity, leMoNe and related methods26 can assign 
regulators with expression profiles that are less similar 
to those of their target genes than is the case with ClR 
or similar methods27,28. Indeed, leMoNe performs bet-
ter than ClR at inferring regulatory programmes for 
genes that are grouped in coarse-grained modules which 
correspond to larger pathways (for example, Fis, RNA 
polymerase σ-factor S (RpoS) and PurR) and for which 
the genes show an overall low degree of co-expression 

Figure 1 | categorization of different state-of-the-art methods for module and 
network inference. Module inference methods search for sets of co-expressed genes. 
The major goal of network inference (NI) methods, on the other hand, is to search for a 
regulatory programme that explains an observed expression behaviour. NI methods can 
be categorized according to the strategies that they use to cope with the problem of 
underdetermination. Direct NI methods consider all genes on an individual basis, 
whereas module-based NI methods conceptualize the network by treating sets  
of co-expressed genes as single entities (modules). NI and module interference  
methods can be further divided according to whether they complement expression  
data with additional data sources (integrative methods) or use expression data only 
(non-integrative methods). Supervised and semi-supervised methods treat the inference 
problem as a classification problem, whereas unsupervised methods do not. The output 
of the methods can be global, indicating that they search for global patterns in the data, 
or query-driven, starting from a predefined set of core genes or core pathways and 
expanding on those. Most of the available programs can be used in either a query-driven 
or a global mode. The methods indicated in pink are specifically designed to be query 
driven. CLR, context likelihood of relatedness; COALESCE, combinatorial algorithm for 
expression- and sequence-based cluster extraction; DISTILLER, data integration system 
to identify links in expression regulation; GPS, gene promoter scan; LeMoNe, learning 
module networks; SEREND, semi-supervised regulatory-network discoverer; SIRENE, 
supervised inference of regulatory networks.
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with each other or with their transcriptional regulator29. 
Conversely, ClR has a higher precision than leMoNe for 
identifying targets of those bacterial regulators that are 
dedicated to one or, at most, a few operons, because in 

bacteria such operonic regulators are tightly co-expressed 
with their targets (for example, glucitol operon repres-
sor (GutR), IscR, BetI and arabinose operon regulatory 
protein (AraC)). A direct method such as ClR also 
covers interactions for a larger range of regulators than 
a module-based method such as leMoNe, as module-
based inference methods lose interactions with target 
genes that are not co-expressed with a sufficient number 
of other target genes29.

Modelling combinatorial regulation. Inferring combina-
torial regulation in its full complexity is also computa-
tionally intensive. Most direct methods, both supervised 
(such as SeReND (semi-supervised regulatory-network 
discoverer)30 and SIReNe (supervised inference of regu-
latory networks)31; see below and BOX 3) and unsuper-
vised (such as ClR32), simplify the problem by assigning 
regulators to their target genes one by one and com-
posing the combinatorial regulatory programmes in a 
post-processing step that finds sets of regulators which 
control the same target genes. Although this substantially 
reduces the complexity of the network inference prob-
lem, such a stepwise approach renders it impossible to 
distinguish between truly complex combinatorial regula-
tion, in which the signals of multiple TFs are integrated 
to trigger the observed gene expression pattern, and 
condition-dependent regulation, in which different TFs 
act independently to mediate expression of their target 
genes under different subsets of conditions. For exam-
ple, applying ClR to data from E. coli resulted in the 
correct assignment of the regulators Gade, Gadw and 
GadX to several genes involved in the acid response32. 
However, the true, more complex relationship of Gadw 
and GadX with Gade, which is the main regulator of the 
acid response and is under the control of both Gadw 
and GadX33, could not be unveiled.

Module-based inference methods such as Stochastic 
leMoNe34 and DISTIlleR (data integration system to 
identify links in expression regulation)8 (BOX 2) auto-
matically take into account the condition dependency 
of the inferred transcriptional programmes: regulators 
that are assigned to the same genes under different sub-
sets of conditions are assumed to act independently, as  
each of them is responsible for triggering a different  
condition-dependent response. Regulators that are 
predicted to regulate the same target genes in similar 
conditions, on the other hand, are presumed to act com-
binatorially, as they are needed simultaneously to trig-
ger the observed co-expression response. For example, 
using DISTIlleR, it was predicted that the E. coli global 
regulator cyclic AMP regulatory protein (Crp) interacts, 
depending on the conditions, with different specific reg-
ulators8. Neither DISTIlleR nor Stochastic leMoNe can 
infer the mode of the combinatorial interactions between 
the assigned regulators — that is, whether the assigned 
TFs act together in an additive or synergistic way (AND), 
in a combinatorial interaction, such that the presence of 
one of the regulators is sufficient to trigger expression  
of the target gene (oR), or in a mutually exclusive manner 
(XoR). By combining the expression profiles of the reg-
ulators according to these different possible interactions 

 Box 2 | Expression-based and integrative network inference methods

CLR (context likelihood of relatedness)32 is an unsupervised, direct, expression-based 
network inference method that reconstructs an interaction between a transcription 
factor (TF) and a target gene based on a correlation in their expression behaviour, as 
assessed by the mutual information measure.

Stochastic LeMoNe34 is an unsupervised, module-based method that infers the  
transcription-regulatory network (TRN) from expression data. It uses a fuzzy, two-way 
clustering approach to assign genes and conditions to modules and subsequently 
assigns a regulatory programme to these pregrouped gene sets. Each module contains 
the genes for which the expression profiles best fit the same multivariate normal 
distribution, which simultaneously partitions the conditions within the module 
according to overexpression or underexpression. The transcriptional programme 
assigned to each module consists of the set of regulators for which the expression 
profiles best explain all or part of the condition partitions in the module.

Inferelator25 assigns a transcriptional programme to either individual genes or 
predefined modules of co-expressed genes that are obtained by the integrative 
module inference method cMonkey47. Multiparametric logistic regression is used to 
search for tightly co-expressed modules that are enriched for genes that make up 
highly connected subgraphs in metabolic and functional association networks and/or 
that contain statistically over-represented de novo-detected motifs. Inferelator uses 
standard regression with model shrinkage to build a parsimonious, predictive model for 
the expression behaviour of the module or the gene, using changes in environmental 
influences and TF expression levels as predictors. The design matrix can capture binary 
interactions (AND, OR or XOR interactions) between TFs.

DISTILLER (data integration system to identify links in expression regulation)8 is an 
integrative, module-based network inference method that combines expression data 
with interaction data (for example, motif or chromatin immunoprecipitation-on-chip 
(ChIP-chip) data) to search for co-regulated modules. It uses an unsupervised strategy 
based on itemset mining to exhaustively enumerate all gene sets that are co-expressed 
under a subset of conditions and that share the same motifs. A probabilistic filtering 
step is used to identify the most relevant set of non-redundant modules from this 
exhaustive list.

The method described by Sabatti et al.43 is a hidden-component model9 that is related 
to the original network component analysis (NCA)112,113 strategy. This method uses  
a linear model to decompose E, which is the measured expression data in a product of a 
sparse connectivity matrix (A) that contains the interactions between all TFs and their 
targets as well as P,  the hidden condition-dependent activities of the TFs112. Methods 
differ in the way they use constraints to uniquely identify A and P. Liao et al.112 constrain 
A using the known network, whereas Sabbatti et al.43 use motif information as a prior in 
a Bayesian framework to guide the reconstruction of the unobserved TF activities and 
interactions. As these methods exploit known information to constrain their search 
space, they can be considered direct, integrative, unsupervised network inference 
methods.

COALESCE (combinatorial algorithm for expression- and sequence-based cluster 
extraction)48 is an integrative, non-supervised module inference procedure that uses  
a Bayesian framework to integrate sequence and expression data. De novo motif 
detection occurs concurrently with the biclustering of the genes and conditions. 
Motifs, represented by probabilistic suffix trees, are assigned to a developing bicluster 
if their occurrence in the module is sufficiently enriched compared with their presence 
in the genomic background. Additional information on sequence conservation or 
nucleosome placement can be used to guide the motif and module inference.

Methods that explicitly use time series gene expression data to infer causal 
relationships are known as time-lagged correlation analysis methods. They generally 
consist of two steps37,38. In the first step, genes with similar expression profiles across 
multiple time points (by Pearson correlation) are grouped in a module or cluster. In  
the second step, causal effectors such as the regulators, the modules that contain the 
regulators37, or environmental inputs38 are related to the target modules using 
time-lagged correlation, a measure that is related to the Pearson correlation coefficient 
but that takes into account shifts in time between the expression of the causal effector 
and the target module.
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Search space
All possible solutions that need 
to be evaluated to find the  
one that is the most optimal 
according to preset criteria. In 
most inference problems, the 
number of possible solutions is 
prohibitively large and cannot 
be enumerated exhaustively.

Clustering 
Grouping of genes that have 
similar expression patterns 
across all conditions.

Biclustering 
Combining the selection of 
co-expressed gene sets with  
a condition selection step to 
infer the set of conditions that 
is relevant to the clustered 
genes.

(AND, oR or XoR) before assessing how well they 
explain the target’s expression behaviour, Inferelator25 
can infer these more complex modes of transcriptional 
interactions. Recently, ClR was also extended to account 
for synergistic relationships (synergy-augmented ClR) 
— that is, when the expression value of a third gene can 
be better explained by two genes together than by each 
of them separately35,36. using this approach, novel links 
were uncovered in the original E. coli ClR network, such 
as the fact that the expression of fecA, which encodes an 
Fe3+ dicitrate transport protein, depends on both fecI and 
aceK (encoding isocitrate dehydrogenase kinase/phos-
phatase), with aceK presumably acting as an indirect 
inhibitor of ferric citrate transport36.

Integrative versus expression-based approaches. Non-
integrative expression-based network inference methods 
extract information about regulator–target interac-
tions from the expression data itself. except for those 
supervised expression-based methods that exploit the 
observed co-expression behaviour of known targets of a 

particular TF, such as SIReNe31 (see below), most non-
integrative methods assume that the expression profile 
of the regulator is a proxy for its activity; for example, 
this assumption is made by Stochastic leMoNe34, ClR32, 
Inferelator25 and correlation-based methods37,38. This 
assumption disregards the important role of regulation  
mechanisms acting at levels other than transcription39 
and restricts the interactions that can be inferred to 
those of regulators that are either co-expressed or 
inversely correlated with their targets40 (FIG. 3). As a 
result, expression-based inference methods such as ClR, 
Stochastic leMoNe and other related methods26–28 are 
biased towards inferring interactions of autoregulators 
or operonic regulators that are tightly co-expressed with 
their targets29. Moreover, most expression-based infer-
ence methods cannot distinguish between regulators 
that actually regulate a gene (that is, that have a direct 
causal effect) and regulators that are simply co-expressed 
with a gene (that is, mere correlation). This problem 
can be partially alleviated by inferring networks from 
dynamic data instead of from static data, as time series 
inherently contain information about causal effects, if 
one assumes that the expression of the TF needs to be 
altered before it can affect its targets (in a direct way or 
through a regulatory cascade). Inferring networks from 
dynamic data requires special techniques that capture 
the expression dynamics (for example, the lag in expres-
sion profiles between genes). Time-lagged correlation 
analysis (BOX 2) was used to infer the regulatory network 
that mediates the response to alternating light condi-
tions in the cyanobacterium Synechocystis38, and the 
Bacillus subtilis regulatory network was inferred using 
the same technique37. In practice, inference of networks 
from dynamic data is restricted by the insufficient time 
resolution of the available samples, which complicates 
the matter of distinguishing true from noisy signals and 
results in fast responses being missed.

By complementing gene expression with additional 
transcriptional information (such as motif data or DNA–
protein interaction data), integrative network inference 
methods8,30,41–45 can extend the scope of their predic-
tions beyond interactions that can be inferred from co- 
expression behaviour and usually result in more reliable 
predictions (FIG. 3). Sabatti et al.43 proposed a direct inte-
grative approach based on hidden component analysis 
(BOX 2) that overlays a network topology derived from 
known and motif-based interactions with expression 
data. This method was used to infer the transcription-
ally active edges in the E. coli network. By exploiting 
the known information on regulatory motifs and tran-
scriptional interactions in the ecoCyc database46 in a 
supervised way, the direct integrative method SeReND 
inferred novel interactions for previously characterized 
regulators of E. coli (see below).

Module-based network inference methods 
such as DISTIlleR8 (BOX 2) rely on an integrative 
module detection step to derive regulatory pro-
grammes. Integrative module inference (DISTIlleR,  
cMonkey47 and CoAleSCe (combinatorial algorithm 
for expression- and sequence-based cluster extrac-
tion)48 (BOX 2)) searches for genes that not only show  

 Box 3 | Query-driven and supervised network inference methods

The method proposed by Gat-Viks et al.64 is a query-driven, expression-based inference 
method. Qualitative knowledge of a pathway of interest is formalized as a Bayesian 
network, in which the nodes represent different molecular entities (genes, proteins or 
metabolites) and the edges represent the interactions between them, with their 
corresponding connection logics. Such a probabilistic formulation of the network 
allows uncertainty to be included in the model. In a first model refinement step, 
possible model improvements (changes in topology and interaction logics) are 
evaluated. Refinements resulting in a model that better predicts the observed 
expression values are withheld. In a second expansion step, transcription factor (TF) 
activities are predicted from the network model, and a likelihood score is used to assign 
additional target genes for which the expression can be predicted by the TF activity 
profile. Thus, the method identifies sets of genes that are regulated by the same set  
of regulators and according to a common logic.

GPS (gene promoter scan)62 is a query-driven, integrative network inference method 
that starts from a set of genes regulated by a common TF. Each gene is represented by  
a list of features, consisting of its expression profile and a detailed description of its 
promoter elements. The set of query genes is separated into distinct clusters according 
to these features, resulting in these genes being grouped according to their specific 
regulation patterns. A fuzzy k-nearest-neighbour classifier is used to extend the 
obtained clusters with new targets on the basis of the similarity between the feature 
profile of the new gene and that of a cluster.

SIRENE (supervised inference of regulatory networks)31 is a supervised, expression- 
based, direct network inference method that splits network inference into multiple 
binary classification problems for each TF. One SVM (support vector machine)-based 
classifier is trained per TF, according to similarities in the expression profiles of target 
and non-target genes: genes regulated by a TF are likely to be co-expressed, whereas 
non-targets are not. This TF-specific classifier is then used to predict which genes are 
regulated by the TF, resulting in a ranked list of potential targets.

SEREND (semi-supervised regulatory-network discoverer)30 and the method 
described by de Hoon et al.68 are  supervised (or semi-supervised), integrative network 
inference methods. A training set of known targets and non-targets is used to 
determine the parameters of two separate logistic regression functions that map the 
expression values and motif scores in the training set to their predictor variables (which 
determine whether the gene is activated, repressed or not regulated by the TF). The 
targets of a TF are thus expected to have a similar motif and expression profile. Motif 
and expression data are treated separately to guarantee proper balancing of the 
unequal number of features in each data set. A metaclassifier, also based on logistic 
regression, combines the outcomes of these separate expression-based and 
motif-based classifiers. The complete classifier is subsequently used to predict the 
probability that genes belong to the same regulon.
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Motif
TF-binding site or specific 
sequence tag that is recognized 
by a TF and is located in the 
promoter region of a gene.

co-expression, but also share a common regulatory 
binding site (identified by de novo motif detection or ChIP 
analysis). exploiting complementary data sources to con-
firm expression-based module assignments reduces the 
assignment of false members to true modules and  
the detection of spurious modules. As the observed co-
expression in a module also implies true co-regulation 
when using integrative module inference methods, the 
module inherently contains information that infers  
the transcriptional programme: for example, each 
module is assigned the regulator that is known to 
recognize the motif or binding site associated with 
the module. Applying DISTIlleR to a cross-plat-
form E. coli expression compendium and motif data 
for 67 known regulators resulted in the prediction 
of 278 new interactions for 29 different regulators8. 
of the 11 new interactions for fumarate and nitrate 
reduction regulatory protein (Fnr) that were experi-
mentally verified by ChIP–quantitative real-time PCR, 
none were predicted by the non-integrative meth-
ods ClR32 and Stochastic leMoNe29. when using 

integrative approaches in combination with de novo-
detected motifs, the assignment of a cognate regulator 
will be based on additional, computationally derived  
criteria (for example, the genomic proximity of the genes 
encoding the regulator and its targets)5 or on a concomi-
tant expression-based inference of the regulatory pro-
gramme25. In the future, mapping of cognate regulators 
to novel motifs  will be further facilitated by integration 
with data resulting from protocols that globally survey an 
organism’s proteome for sequence-specific interactions  
with putative DNA regulatory elements49,50.

So, inference methods that use only expression data 
are useful for organisms for which there is little addi-
tional information available. Integrative methods, on the 
other hand, provide a more complete view of the net-
work and are more likely to predict true positive interac-
tions. However, the additive value of integrative methods 
depends on the quality of both the additional data51 and 
the algorithm used.

Global versus query-driven inference. Global module 
inference methods22,52–59 search for the modules that 
explain most of the data. This usually corresponds to 
identifying large pathways that consist of many genes 
and that are usually responsible for the general responses 
to major metabolic or condition shifts, such as the path-
ways that regulate flagellar synthesis, amino acids bio-
synthesis and the DNA damage response. As such, global 
approaches provide a general view of the active TRN 
and the resulting physiological state in the cell. Query-
driven module detection methods, on the other hand60,61,  
search for genes that are co-expressed, in a condition-
dependent way, with a predefined set of genes (also called 
query genes). These algorithms are deliberately biased 
towards finding a specific local solution in the search 
space according to the particular interests of the user. 
This solution is usually not easy to find using a global 
approach, as either the expression signals of the query 
genes are too low to be significant or the local solution 
is obscured by a more global one. For example, searching 
an E. coli compendium for a PurR-related module using 
a known PurR target as a query returns a module that is 
indeed significantly enriched for previously known PurR 
targets (P < 1 × 10–15), whereas with a global approach 
the module that contains the most PurR-related genes 
(under default conditions) is much larger and enriched 
for more general functions related to amino acid bio-
synthesis and translation (R.D.S., unpublished observa-
tions). Query-driven approaches are thus typically used 
to expand or curate a particular pathway or process either 
by searching for additional genes that are co-expressed 
with genes known to be involved in the pathway or by 
filtering out genes that are not co-expressed with the 
majority of the so-called pathway genes. For instance, 
the query-driven Signature Algorithm (SA) refined the 
gene set involved in the tricarboxylic acid (TCA) cycle 
in Saccharomyces cerevisiae using the homologues of  
37 E. coli TCA cycle genes as queries61.

Most of the global network inference methods 
described above can be applied in a query-driven set-
ting by restricting their input data sets. In some cases 

Figure 2 | complementarity in the type of interactions inferred by direct  
and module-based inference methods. CLR (context likelihood of relatedness) and 
Stochastic LeMoNe (learning module networks), as representatives of direct and 
module-based inference methods, respectively, were applied to the same Escherichia coli 
compendium32. The precision of the inferred interactions was calculated as described in 
Faith et al.32, using experimentally documented interactions in RegulonDB69 as a standard. 
a | A comparison of the precision with which true interactions were inferred for both 
methods; the difference in the precision obtained with CLR and with LeMoNe was 
calculated for each regulator. Regulators are ranked according to this difference in 
precision. A high negative value indicates a higher precision for LeMoNe than for CLR, 
and high positive values indicate the opposite. b | The values of the regulator-specific 
precision for LeMoNe and CLR. c | The size distribution of the the known regulon 
membership, according to RegulonDB, for the regulators for which either LeMoNe or 
CLR show a higher precision. Parts a and b illustrate the complementarity between both 
methods in retrieving interactions for different regulators. Part c shows that LeMoNe 
predicts, on average, correct targets for more global regulators (with a larger regulon 
size), whereas CLR typically predicts targets for regulators with fewer known targets. 
Note that predictions for regulators that are not documented in RegulonDB are not 
included in this plot.
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SIRENE
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SIRENE
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Classification problem
A problem that can be  
solved by a system whereby 
properties or features of known 
targets and non-targets of a 
regulator are derived from 
high-throughput data and used 
to construct a classifier function 
— that is, a mathematical 
function that describes the 
relationship between the class 
labels (being a target versus 
being a non -target) and the 
corresponding properties of  
the high-throughput data. 
These classifier functions  
can then be used to predict 
whether or not a gene of 
interest is a target of the 
studied TF on the basis of  
its data properties.

Operonic regulator
Regulator dedicated to one 
specific operon.

De novo motif detection
Computational strategy to 
identify TF binding sites 
without any prior information 
on the sequence of the site. 
such a strategy relies on 
certain subsequences being 
statistically over-represented in 
a set of co-regulated genes.

this can be advantageous; for example, methods such 
as ClR, Stochastic leMoNe and Inferelator perform 
better if the transcriptional programme can be inferred 
from a prespecified list of regulators rather than from 
a full gene list, because erroneous interactions with 
non-regulators will be eliminated a priori. Algorithms 
specifically designed for query-driven network searches 
focus on one or a few core pathways62–65. By constrain-
ing the search space to only those solutions that contain 
the query, these methods can make more detailed net-
work models than would be possible in a global setting. 
Gat-viks et al.64 (BOX 3) formalized the existing quali-
tative knowledge about the yeast osmotic response as 
a probabilistic model. Interrogating this model with 
expression data allows both refinement of the model, 
by correcting erroneous interactions, and extension of 
the original network with novel targets that are affected 

by components of the original network. Alternatively, 
kinetic approaches for modelling the dynamics between 
TFs and target genes from time series expression data, 
which are still intractable on a genome-wide scale, have 
been successfully applied in a query-driven mode to vali-
date the outcome of a ChIP-chip experiment. So far, these 
approaches have only been applied to higher eukaryo-
tes66. The GPS (gene promoter scan) algorithm62 (BOX 3) 
is another query-driven network inference method 
that takes advantage of detailed promoter descriptions 
in combination with expression data from mutants to 
extend the regulon of a predefined regulator. More spe-
cifically, GPS identified four additional PhoP targets in 
S. Typhimurium that were previously thought to be only 
indirectly PhoP dependent. Furthermore, the identified 
PhoP targets in E. coli were assigned to different  mod-
ules, one of which primarily contained genes that are 

Figure 3 | The different characteristics of interactions inferred by expression-based and integrative network 
inference methods. a,b | Expression-based methods that estimate the activity levels of the regulators from their 
expression profiles are biased towards predicting interactions for regulators that are tightly positively or negatively 
correlated with their targets. For methods that infer regulatory programmes from complementary data sources, this is  
not the case. The expression-based method CLR (context likelihood of relatedness; part a) and the integrative method 
DISTILLER (data integration system to identify links in expression regulation; part b) were applied to the same 
Escherichia coli expression compendium (results were taken from Lemmens et al.8). The histograms display the number  
of predicted pairwise TF–target interactions as a function of their mutual co-expression. As a reference, the same 
distribution is shown for all interactions documented in RegulonDB69. A correlation coefficient of 1 corresponds to  
the situation in which the profiles of the regulator and the target gene are exactly the same, which is the case for 
autoregulators. c,d | Integrative methods result in more reliable predictions than methods that use only expression 
information. The performances of an expression-based network inference method (SIRENE; supervised inference of 
regulatory networks) and an integrative (SEREND; semi-supervised regulatory-network discoverer) network inference 
method are compared using chromatin immunoprecipitation-on-chip (ChIP-chip) data as an external standard. Part c 
displays the precision–recall curve for SEREND and SIRENE predictions made for cyclic AMP regulatory protein (Crp).  
The area under the precision–recall curve, indicated by shading, is used as an estimate of the overall performance of the 
network inference method. Part d compares the areas under the precision–recall curves for SIRENE and SEREND for five 
different regulators for which ChIP-chip data114–116 is available: Crp, H-NS, integration host factor (IHF), fumarate and 
nitrate reduction regulatory protein (Fnr) and Fis. SEREND, the integrative method, outperforms SIRENE in retrieving 
ChIP-chip targets for each of the regulators considered.
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involved in acid resistance. This allowed a novel link 
between PhoP regulation and bacterial acid resistance  
to be established62,67.

Supervised versus unsupervised inference of the regula-
tory programme. Supervised methods treat inference as 
a classification problem. They start from a set of known 
TF–target interactions and, on the basis of this prede-
fined training set, characteristic features are derived, 
such as TF binding sites (SeReND30 and de Hoon 
et al.68) or the degree of co-expression between TF tar-
gets (SIReNe31, SeReND30 and de Hoon et al.68). These 
characteristics are subsequently used to evaluate a new 
candidate gene as a potential target of a TF. Genes that 
share many characteristics with the known targets of the 
TF are classified as true targets, and the others as non- 
targets. Such a classification strategy depends on the qual-
ity of the training set of true-positive and  true-negative 
interactions. It is straightforward to extract examples 
of positive interactions from curated databases, such as 
RegulonDB69 (E. coli), ecoCyc46 (E. coli) and DBTBS70 
(B. subtilis) (see Supplementary information S1 (table) for 
further information about databases), but the definition 
of true-negative interactions is much less trivial. Genes 
that are not known to interact with a specific regulator 
— that is, ‘unknowns’ — are often treated as negatives. 
However, our knowledge of TRNs is still limited and there 
is therefore a good chance that such a set of ‘unknowns’ 
contains as-yet-uncharacterized true-positive interactors 
for a given TF, in which case the classification results will 
be deteriorated.

By extrapolating from previously known information, 
interactions that are predicted with supervised meth-
ods are generally reliable but are restricted to regulators 
with sufficient previously known targets, such as global 
regulators and σ-factors from well-characterized model 
organisms (such as E. coli 30,31 and B. subtilis68) (FIG. 4). 
SeReND was shown to be very useful for extending the 

Figure 4 | complementarity in the type of interactions 
inferred by supervised versus unsupervised network 
inference methods. SIRENE and CLR (context likelihood 
of relatedness), as representative supervised and 
unsupervised network inference methods, respectively, 
were applied to the same Escherichia coli compendium32. 
For both methods, the top 1,422 interactions were 
considered. a | The number of transcription factors (TFs)  
for which interactions could be inferred by each method. 
b | The average number of targets inferred per TF by  
each method. As they exploit known information, 
supervised methods are more comprehensive than 
unsupervised methods for predicting targets for a specific 
regulator. c | The number of documented targets for all  
of the regulators reported in RegulonDB69, ranked 
accordingly, is shown on the right side of the graph. The 
regulators for which most targets have been described  
to date correspond to global regulators and σ-factors.  
For each inference method, the number of inferred 
interactions per regulator is indicated on the left side  
of the graph. Supervised methods are biased towards 
predicting targets for those regulators that have a 
sufficiently high number of previously known targets.   
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Precision–recall curve
Customary method of 
comparing the precision and 
recall of a network inference 
method in order to evaluate 
the performance of inference 
algorithm. The precision is the 
proportion of correctly inferred 
interactions, according to an 
external standard, out of the 
total number of predictions 
made. The recall is the degree 
to which the total number of 
existing interactions in the real 
network has been covered by 
the predictions.

Cross-validation
statistical technique that 
assesses the extent to which a 
model fitted on a certain data 
set can also predict the 
observations made on an 
independent data set. 

repertoire of interactions of the E. coli global regulators 
integration host factor (IHF), H-NS, Crp, Fnr and Fis30.

To infer interactions in less studied organisms, 
unsupervised approaches are more suitable (such as 
Stochastic leMoNe, ClR, DISTIlleR and Inferelator), 
as they do not necessarily depend on previously known 
information and they can also infer interactions for 
regulators for which there is little or no prior knowl-
edge (FIG. 4). unsupervised methods that can infer tran-
scriptional programmes from only expression data, such 
as ClR and Inferelator, have been shown to be useful 
for providing a first, global view of the TRNs of, for 
example, S. Typhimurium71,72, Shewanella oneidensis73, 
Halobacterium salinarum12 and Cyanobacteria74.

Choosing benchmark data sets
Benchmarking is important for being able to understand 
the reliability of the reconstructed network. It is based 
on the precision–recall curve, which is calculated accord-
ing to a predefined external standard. This standard is 
generated by collecting all curated interactions for a 
particular organism and treating them as true positives, 
and treating as false positives all predicted interactions 
between a gene and a TF that are not documented in the 
curated database. using such a standard tends to over-
estimate the false-positive prediction rate, as most genes 
probably interact with many more TFs than is currently 
documented. Moreover, the assessment ignores all new 
interactions with those TFs for which no interactions are 
documented yet. As a result, use of an external standard 
rewards methods that merely reproduce current knowl-
edge but penalizes those that perform well in finding 
new results. To compensate for this, most current stud-
ies combine validation based on an external standard 
with medium-throughput experiments to also validate 
the new results8,9,32. 

Medium-throughput experiments avoid the unfeasi-
ble task of testing all new predictions by sampling a set of 
predicted interactions that is representative for the whole 
analysis. In practice this set usually consists of both high-
confidence and low-confidence interactions for one or a 
subset of the assessed TFs. For E. coli, mainly global reg-
ulators were chosen, such as Fnr8 and leucine-responsive 
regulatory protein (lrp)9,32, as for these regulators there 
is a good balance between undiscovered and already 
known interactions, which favours benchmarking. For 
example, by combining performance analysis using 
RegulonDB with a ChIP-based medium-throughput 
experiment, three groups showed that their respective 
methods each had a good sensitivity for detecting known 
interactions but also that high-scoring new predictions 
usually corresponded to true interactions8,9,32. 

For network inference methods that use predictive 
models, cross-validation can be used to validate the reliabil-
ity of the inferred model; this method assesses the ability 
of the model to predict the expression behaviour of genes 
in experiments that were not used to build the model25,34. 

In several studies, ChIP-chip-derived interac-
tions have also been used as an alternative standard to 
benchmark algorithms but, like any high-throughput  
data source, they contain many false-positive (or 

non-functional) and false-negative interactions. This 
explains the low performances that are often observed  
in benchmark studies using ChIP-chip data (FIG. 5).

obtaining insight into the behaviour of the algorithm 
requires a more objective validation strategy that uses 
perfect standards, made in silico by simulating data that 
mimic real data75,76. Simulated data are very useful for 
unveiling the qualitative properties of the algorithm 
under all kinds of test conditions that can never be 
obtained with real experimental data (for example, they 
can be used to test noise robustness, the sensitivity of 
the parameter settings and the optimality of the pro-
posed solution)77. Their drawback is that they can never 
grasp the full biological complexity of real data (such 
as the exact properties of the experimental noise or the 
multilayered aspect of gene regulation78). To further 
bridge the gap between in silico and real data, the use of 
synthetic gene networks has been proposed79. These are 
engineered circuits with well-defined network topolo-
gies and interaction structures. The dynamic behaviour 
of such circuits is fully characterized using real meas-
urements, and the resulting models are used to simulate 
data on which inference methods can be tested.

Benchmark studies are extremely useful for guiding 
both users and developers. However, relying on a bench-
mark study to find out which algorithm is ‘the best’ is 
difficult, as the choice of an appropriate inference tool 
depends on the research question posed. Fair bench-
mark studies should describe not only in what respect 
an algorithm is the best, but also where it fails. The qual-
ity of a benchmark study also depends on the extent to 
which parameter tuning is performed to guarantee that 
each of the applied tools performs optimally in the set-
ting in which they are used. In this regard, the DReAM 
(Dialogue on Reverse engineering Assessments and 
Methods) initiative78,80 offers a platform for the unbiased 
assessment of network inference methods. They organ-
ize a yearly competition in which developers can par-
ticipate with their own method to infer networks from 
blinded data sets. 

Exploiting the complementarity
The overlap between inferred results from different 
methods can be very low, as illustrated in FIG. 5. This, 
together with the observation that the results of each 
of the tested methods show a similar degree of over-
lap with an external validation standard (RegulonDB69 
or ChIP data), indicates that this discrepancy in pre-
dicted interactions is not due to the failure of one of 
the methods to infer biologically relevant interac-
tions, but is rather due to the complementarity of the 
different methods.

It is likely that no single best method exists, and dif-
ferent methods highlight different interaction types, so 
aggregating the outcomes of complementary methods 
offers a means of improving the breadth and the accu-
racy of the predictions. This idea of combining the out-
comes of different methods has already been suggested 
in various contexts81, and a ‘reverse-engineering by  
consensus’ approach has been advocated recently80,82, as 
a result of the outcomes of the DReAM2 and DReAM3 
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conferences. At these meetings, it was shown that an 
ensemble of the predictions made by the best per-
forming methods of the DReAM contest more closely 
approximated the true interaction network than did the 
predictions made by each method separately.

To construct an ensemble solution that reflects an 
overall statistical confidence in each of the predicted 
interactions, inference methods are required that pro-
vide an explicit ranking of the predicted interactions 
according to the scoring scheme they use; such methods 
include Stochastic leMoNe, ClR, DISTIlleR, SeReND 
and SIReNe. These individual rankings can then be 
combined into a ranked ensemble solution that assigns 
a higher confidence to interactions that are repeatedly 
retrieved by the different methods.

As well as being useful for combining the outcomes 
of different methods, an ensemble solution can be used 
to integrate different results from a single method. 
Because of the large search space, finding the most 
optimal solution to a network inference problem is 
non-trivial, and optimization algorithms often result in 
suboptimal solutions that all approximate the true glo-
bal optimal solution but differ slightly from each other. 
For methods that can capture different possible solu-
tions, a consensus solution from interactions that are 
repeatedly inferred from the data34,83 allows the accuracy 
of the predicted interactions to be increased by better 
approximating the global solution.

At this stage, only tentative steps have been taken 
to improve on TRN reconstruction through ensem-
ble methods. Much more work is needed to assess 

whether ensemble solutions will succeed in simultane-
ously increasing precision and recall of the predicted 
interactions.

Conclusions and future directions
To make sense of the flood of high-throughput data 
that is being generated, it is necessary to integrate the 
use of inference methods into daily laboratory practice 
to assist researchers in grasping higher-level biologi-
cal insights or in prediction-based hypothesis testing.  
State-of-the-art inference tools rely on a unique combina-
tion of strategies to solve the inference problem. Because 
each strategy applies different assumptions, they each 
have different strengths and limitations and highlight 
complementary aspects of the network. Categorizing the 
tools according to their strategies allows users to gain 
insights into the settings under which they can most 
optimally be applied. The tool that is most appropriate 
for a certain researcher depends on the available data 
and the research purpose.

The nature of the expression data generally deter-
mines whether a direct or module-based inference 
method will be more appropriate. when the set of avail-
able expression data is large and/or heterogeneous in 
the assessed conditions, module-based inference meth-
ods are to be preferred over direct inference methods. 
when aiming to reconstruct the complete TRN, glo-
bal inference methods are more suitable than query-
driven approaches. For less studied microorganisms 
for which only expression data is available, expression-
based network inference methods are ideal for making 
a first-draft reconstruction of the TRN. Integrating 
high-throughput data on TF–target interactions along 
with the expression data will generally allow for a more 
accurate (that is, with fewer false-positive interactions) 
and more complete picture of the TRN — including the 
prediction of combinatorial control, for example. But 
this method might become restrictive, inferring interac-
tions for only those TFs for which the additional infor-
mation is available. This is a disadvantage if one wants 
to derive global network properties. when a researcher 
is interested in expanding our knowledge of a particu-
lar part of the regulatory network rather than gaining a 
complete network view, query-driven methods are to be 
chosen over global approaches. when a reconstructed 
network is to be used as a starting point for the genera-
tion of further biological hypotheses, methods that pro-
vide an explicit ranking of the inferred interactions are 
advantageous, as this allows the researcher to prioritize 
candidates for further experimental work. Moreover, in 
such cases researchers benefit from using an integra-
tive or supervised approach that exploits the proper-
ties of existing interactions to infer highly reliable new 
interactions. However, the more the method is biased 
towards existing knowledge, the more it will be blind to 
novelty. To take full advantage of the complementarity 
between the different methods, a ‘reverse-engineering 
by consensus’ approach seems to be the ideal option, 
combining the knowledge gained from multiple infer-
ence methods or from multiple outcomes from a single 
computational approach80,82.

Figure 5 | The low overlap of the predictions made by different network inference 
methods that rely on different strategies. Various network inference methods were 
run on the same Escherichia coli gene expression compendium32 and their results were 
compared. The proportion of shared predictions out of the total number of predictions 
ranges from 5.7% to, at most, 24%. The overlap with RegulonDB ((number of interactions 
in common with the external standard / total number of predicted interactions) x 100) 
ranges from 15% to 18%, and the overlap with chromatin immunoprecipitation-on-chip 
(ChIP-chip) data ranges from 2% to 3%, with a very low performance for CLR (context 
likelihood of relatedness) predictions compared with ChIP-chip data (<1%). a | A mutual 
comparison between the results of the module-based approach Stochastic LeMoNe 
(learning module networks) and the direct method CLR, both of which are non-integrative 
and unsupervised, using the known network data in RegulonDB69 as an external standard. 
b | A comparison between the results obtained using CLR and the supervised method 
SIRENE (supervised inference of regulatory networks; both methods are non-integrative 
and direct). Available ChIP-chip data for several E. coli regulators was used as an external 
validation standard114–116, as SIRENE uses the information in RegulonDB to make its 
predictions. c | A comparison between the results of the non-integrative method SIRENE 
and the integrative method SEREND (semi-supervised regulatory-network discoverer), 
which combines expression data with motif data (both methods are supervised and direct). 
Available ChIP-chip data was used as an external standard, as in part b. 

R E V I E W S

726 | oCToBeR 2010 | voluMe 8  www.nature.com/reviews/micro

© 20  Macmillan Publishers Limited. All rights reserved10



The advent of novel technologies such as tiling arrays 
and, more recently, deep-sequencing techniques84,85 gives 
further importance to network inference. Although 
most inference methods can be readily applied to these  
new types of expression data, as they are insensitive to 
the type of technology used to generate the data, they will 
have to be adapted to account for the more detailed level 
of information that results from these novel technolo-
gies, including the presence of trans-acting small RNAs86 
and riboswitches87, the non-static structures of operons 
with multiple intra-operonic transcription sites6,7 and so 
on. As well as the increased level of detail, these novel 
technologies provide information that was not acces-
sible before: re-sequencing the genomes of individual 
bacterial strains pinpoints strain-specific mutations and 
copy number variations in both coding and non-coding 
regions, and ChIP-seq (ChIP followed by sequencing) or 
ChIP-tiling (ChIP followed by microarray analysis) pro-
vides more detailed mapping of the genomic regions in 
which cis-acting regulators or nucleoid proteins bind88. 
The regulation of transcription can be described from 
multiple angles using this new data, and so integrative 
methods are now further challenged to provide a more 
accurate and detailed picture of the TRN and to consider 
the full dynamics of the system89.

Although most inference studies carried out to 
date have focused on understanding the condition-
dependent behaviour of a TRN in one specific model 
bacterial strain, these new types of information that are 
available have opened a new application field, called 
‘individualized, expression-centred’ network inference. 
expression-centred inference uses the premise that most 
of the mutations or changes occurring in the regulatory 

network at levels other than transcription will eventu-
ally lead to an altered expression profile. This assump-
tion allows the expression profiles of individual strains 
to be considered as specific phenotypes or traits90–95. 
Additional sequence-derived genomic information 
can then be used to explain individually observed vari-
ations in expression behaviour, similarly to the iden-
tification of eQTls (expression quantitative trait loci) 
in higher eukaryotes. Inference methods that generate 
an explicit explanatory model for the observed expres-
sion profiles (for example, Inferelator and Stochastic 
leMoNe) can easily be extended for this purpose96–99. 
linking adaptive changes of microbial genomes100–102 
to altered expression behaviour will unveil fundamen-
tal insights into microbial evolution and will identify 
the multifactorial changes that underlie industrially 
relevant properties of naturally occurring bacterial or 
yeast strains103. Moreover, a better fundamental under-
standing of how expression behaviour is encoded in 
the genome will help further rationalize synthetic 
biology104,105. Most of the inferences from such an 
expression-centred approach will provide only an indi-
rect link between the observed genomic or epi genetic 
alteration and the observed strain-specific expression 
profiles. Future inference tools should focus on find-
ing the hidden path between a genomic change and an 
alteration in gene expression, by exploiting informa-
tion that is available about all levels of regulation, such 
as the transcriptional, post-transcriptional, signalling  
and metabolic levels97,106–111.

Individualized expression-centred inference stud-
ies will not only complete, but also revolutionize our 
understanding of bacterial gene regulation.
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