
ADDENDUM
SynTReN: a generator of biologically plausible synthetic
gene expression data for design and analysis of structure
learning algorithms

Tim Van den Bulcke†1, Koenraad Van Leemput†2, Bart Naudts2, Piet van Remortel2, Hongwu
Ma3, Alain Verschoren2, Bart De Moor1and Kathleen Marchal∗1,4

1ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
2ISLab, Dept. Math. and Comp. Sc., University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium
3Dept. of Genome Analysis, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
4CMPG, Dept. Microbial and Molecular Systems, K.U.Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium

Email: Tim Van den Bulcke - tim.vandenbulcke@esat.kuleuven.be; Koenraad Van Leemput - koen.vanleemput@ua.ac.be; Bart

Naudts - bart.naudts@ua.ac.be; Piet van Remortel - piet.vanremortel@ua.ac.be; Hongwu Ma - hma2@inf.ed.ac.uk; Alain Verschoren

- alain.verschoren@ua.ac.be; Bart De Moor - bart.demoor@esat.kuleuven.be; Kathleen Marchal∗- kathleen.marchal@biw.kuleuven.be;

∗Corresponding author

†Contributed equally

Topological measures
Not many deterministic and informative topological measures are available [1]. The established measures
can be roughly divided into two categories: high-level (global) measures and low-level (local) measures. In
order to calculate the high-level property measures (e.g. average path length) one needs to know the whole
network, while the low-level properties can be calculated locally (e.g. marginal degree of individual node).

We use both low and high-level topological measures that address different aspects of the network structure.
The high-level measures contain network indices such as average clustering coefficient and average path
length. The low-level measures are composed of both marginal and bivariate joint degree distributions [1,2].

The average path length l̄ is defined as follows: Given two genes, let lij be the length of the shortest path
connecting these two genes, following the links present in the network. Depending on the type of network,
these can either be directed and/or undirected links. N is defined as the number of nodes in the network.
The average path length l̄ is defined as:

l̄ =
2

N(N − 1)
·

N∑
i<j

lij

The adjacency matrix ξij indicates an interaction between genes γi and γj (ξij = 1) or no interaction
(ξij = 0).

The set of nearest neighbors of a gene γi is indicated by Γi = {γj |ξij = 1} . The clustering coefficient Ci
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for this gene is defined as the ratio between the actual number of connections between the genes in Γi, and
the total possible number of connections, |Γi|(|Γi|−1)

2 .

Formally, the clustering coefficient of the i-th gene Ci is defined as:

Ci =
2 · Li

|Γi|(|Γi| − 1)

where

Li =
N∑

j=1

ξij · [
∑
k∈Γi

ξjk]

The (average) clustering coefficient is defined as the average Ci over all genes γi:

C =
1
N

N∑
i=1

Ci

Types of random networks
In [3,4], different types of random graphs are used as a network topology: Erdös-Rényi [5], Albert-Barabási [1]
and Watts-Strogatz [6] random graph models. These models and the DSF model of Bollobás [7] will be briefly
described. We refer to the literature [1, 5] for further details.

Erdös-Rényi (random network)
As described in [1], a random Erdös-Rényi graph can be defined by a binomial model. We start with N
nodes and connect every pair of nodes with probability p. Figure 7 shows a series of 6-node graphs with
different p values.

Watts-Strogatz (small-world network)
The model of Watts and Strogatz interpolates between an ordered lattice and a random graph according to
the following algorithm (after [1]):

1. Start with a ring lattice with N nodes, where every node is connected to its K nearest neighbors.

2. Randomly rewire each edge with probability p, but avoid self-edges and duplicate edges.

This process introduces long-range edges among the initial short-range edges (see Figure 8) which connect
nodes that otherwise would be part of different neighborhoods. These networks have a small-world property:
the shortest path between any two nodes is small on average.

Albert-Barabási (scale-free network)
The model of Albert and Barabási is based on two basic principles: growth and preferential attachment. The
graph starts with a small number (m0) of nodes, and for a series of timestaps, a new node is added each
time with a number of edges according to the following rules:

1. Growth: at every time step, we add a new node with m (< m0) edges that link the new node to m
different nodes already present in the system.

2. Preferential attachment: the probability p that a new node will be connected to an existing node is
proportional to the degree of that node.

Based on these rules, it can be proven that the probability that a node has k edges follows a power law [1,8].
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Bollobás (directed scale-free network)
Bollobás et al. [8] present an extension of the Albert-Barabási model [1] for directed graphs. Following the
same basic principles, these graphs grow with preferential attachment depending on in- and out-degrees.
The resulting in- and out-degree distributions are again power laws, possibly with different exponents.

The model has five parameters (α, β, γ, δin and δout) and starts with any fixed initial directed graph Go. At
each time step:

• With probability α, add a new vertex v together with an edge from v to an existing vertex w, where
w is chosen according to the probability distribution din(w) + δin where din(w) is the in-degree of w.

• With probability β, add an edge from an existing vertex v to an existing vertex w, where v and w are
chosen independently, v according to dout(v) + δout, and w according to din(w) + δin.

• With probability γ, add a new vertex w and add an edge from an existing vertex v to w, where v is
chosen according to dout(v) + δout.

The following equations hold: α + γ > 0 and α + β + γ = 1.

Interaction types
Equations based on Michaelis-Menten and Hill kinetics have been used to model different types of local
interactions between a gene and its parents [4, 9, 10]. In our implementation, all gene expression values are
normalized between 0 and 1, where 0 indicates that no transcription occurs and 1 refers to a maximal level
of transcription.

The mRNA transcription rate has the form δr
δt = v − kd[r] where v is the mRNA production rate, [r] is

the concentration of the produced mRNA and kd is the degradation constant of the mRNA. In steady-state
conditions, δr

δt = 0 and [r] = v
kd

. The normalization of the expression value is done by applying the following
boundary conditions:

• r = 1 when [Ai] = 1 and [Ij ] = 0,∀i, j

• r = 0 when [Ai] = 0 and [Ij ] = 1,∀i, j

where [Ai] are the concentrations of the activators, [Ij ] are the concentrations of the inhibitors.

Intuitively, it is easy to see that, given a fixed production rate, a lower degradation constant will lead to a
higher absolute number of mRNA copies in the cell, because it takes longer to reach equilibrium. However,
because of the rescaling step described above, the effect of the degradation constant is canceled. The data
produced by our tool can therefore be compared to adequately pre-processed and scaled expression data.
Scaling of expression data will bring the expression values of different genes into the same range and is
typically a first step in analysis of expression profiles because it allows detection of qualitatively similar
expression profiles between genes that have a different absolute range of expression values.

A distinction has been made between different types of interactions (including cooperative, competitive,
non-competitive and synergistic interactions). In the general case for N regulators, an empirical general-
ization is made to model Hill kinetic interactions, similar to [4]. No interactions such as competitivity,
non-competitivity and synergism are modeled for the general case. A derivation of such an overall rate
law is outside the scope of this work. The general steady-state equation for N regulators (P activators, Q
inhibitors) is given by:
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v =
V0,max +

∑P
i=1(

Ai

Ki
)nact

i ·
∏P 6=i

j=1 (1 + ( Aj

Kj
)nact

i ) · Vi,max∏P
i=1(1 + ( Ai

Ki
)nact

i ) ·
∏Q

j=1(1 + ( Ij

Kj
)ninh

j )

The exponents nact
i and ninh

j are the Hill constants for the specific activators and inhibitors. Hill constants
are integer and nact

i ≥ 1, ninh
j ≥ 1,∀i, j.

Specialized interaction types were derived for cases with two regulators and are given by the equations below.

One activator and one repressor, competitive:

v =
V0,max + V1,max · A

Ka

1 + I
Ki

+ A
Ka

One activator and one repressor, non-competitive:

v =
V0,max + V1,max · A

Ka

(1 + I
Ki

) · (1 + A
Ka

)

Two activators, synergism:
V3,max = β · (V1,max + V2,max)

v =
V0,max + V1,max·A1

K1a
+ V2,max·A2

K2a
+ V3,max·A1·A2

K1a·K2a

1 + A1
K1a

+ A2
K2a

+ A1·A2
K1a·K2a

where β denotes the degree of synergism between the two activators.

The parameters of all these equations are chosen from predefined distributions, and are chosen in a range
that allows for a variation in possible interaction kinetics that are likely to occur in true networks (including
linear activation functions, sigmoid functions, . . . ), while avoiding very steep transition functions. For exam-
ple, the distribution for the values of Kh is centered around 0.5. For Kh equal to 0.5, the transcription rate
of the target of a regulator is at 50% of its maximal transcription rate if the regulator is at 50% of its maxi-
mal transcription rate. For high and low values of Kh, the relation between regulator and its target is steeper.
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