
DISTILLER Version 1 

 
DISTILLER is free to use for academic purposes only. If used in your academic work, 

please include all relevant references by its authors. For any non-academic purpose, 

please contact its authors. 

In addition, DISTILLER can be distributed freely for academic purposes, as long as this 

file and all other files mentioned in this file are distributed along with the code. 

DISTILLER makes use of JCommon (http://www.jfree.org/), the original jar files of 

which are also included in this distribution. They should always be distributed along with 

DISTILLER, as well as this reference to JCommon. By using DISTILLER you agree to 

adhere to the terms of the GNU Lesser General Public License (LGPL) to which 

JCommon are subject. The GNU Lesser General Public License (LGPL) is included in 

this distribution, and should remain so, if further distributed: 

LGPL-license.txt. 

Please direct comments and questions related to the software to: 

kathleen.marchal@biw.kuleuven.be 

Also check the accompanying website for recent updates: 

http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Information_Lemmens_200

8/Index.html 

 
INSTRUCTIONS 

Unpack the zip-file DISTILLER .zip and store all files in the same folder. 

Make sure java 1.5 is installed. 

Then: 

* Execute the command ‘java -jar -Xmx512m MiTraM.jar input.txt’ in a terminal, in 

the folder in which the files are stored. 

* Execute the command ‘java -jar -Xmx512m MiTraM_ModuleSelection.jar 

inputModuleSelection.txt’ for the module selection step. 

PREPARING THE INPUT FILES 

1. Main input file 
In the main input file, one can specify the parameter settings that will be used by 

DISTILLER to find the seed modules. Although in our study, only expression and 

regulatory motif data were used, our data integration framework is very flexible for 

adding more data sources, for instance ChIP-chip data. These data sources can be listed 

by separating the parameters by commas (See the example below). The motif and/or 

ChIP-chip are referred to as input interaction data in the accompanying paper. Note that 

they can either be 0-1 matrices or matrices containing 1 – (p-values). In the latter case, 

the variable binary pvalues (or binary thresholds) is used to obtain the corresponding 

binary matrices. In contrast, all parameters concerning the expression data are referred to 

as ‘box’ parameters. 

• binary supports: 1, 1 
= the minimum number of regulators (in case of ChIP-chip data) or number of 

regulatory motifs (in case of regulatory motif data) that should be shared by the 3 genes 
in the modules. In this example, two input interaction matrices are available and the 



parameters for these data were both set to one. 

• box supports: 50 
= the minimum number of arrays in which the genes of the module should be 

coexpressed. 

• binary pvalues: 0.0001, 0.0001 
= the probability that a randomly sampled gene set of a certain size (size of random 

modules) will satisfy the binary supports. 

Alternatively, one may specify "binary thresholds: 0.99, 0.9", for example (as in the 

previous version). These thresholds are the minimum score (or 1 - p-value) a 

regulator/motif should have in the respective matrices. Based on these variables binary 

pvalues or binary thresholds, the algorithm converts the input interaction matrices to 

binary matrices. 

• box pvalues: 0.0001 
= the probability that a randomly sampled gene set of a certain size (size of random 

modules) will satisfy the threshold bandwidth sequence on the expression data (or box 

p-value). 

• binary files: C:/Documents and Settings/data/Chip-chip.txt, 
C:/Documents and Settings/data/Motifs.txt 

= input interaction matrices files 

The binary files should be of the following format: the rows represent the genes, and for 

each of the respective input files the columns represent the motifs (motif data), the 

regulators (ChIP-chip data) or the experiments (expression data). Each binary file should 

contain the same number of genes, ordered in the same way. Both the rows and the 

columns should be numbered in the binary file. 

• box files: C:/Documents and Settings/data/Expressiondata.txt 
= expression data file 

• number of randomizations: 1000000 
= the number of random modules that will be used to set the binary and box pvalues 

• size of random modules: 4 
= the number of genes in the random modules (gene content threshold) 

• output file initial significances: outputInitial.m 
= the name of the file to which the module output should be written. This matlab file 

contains for each module the index of the genes (items), the arrays in which the genes are 

co-expressed (boxtidset1), the regulators/motifs shared by the genes (tidset1), the 

p-values that were assigned to the modules (Significances). 

• minimal module size: 4 
= the minimum gene content of the modules that should be reported 

• logfile: logfile.txt 
= a log file containing information on, for example, the running time 

• data folder: dataFolder 
= folder where all output files should be written to 

2. Input file for the module selection step 
During the module selection step, an iterative procedure is applied that selects the most 

interesting modules one by one. It takes into account the significance of individual 



modules but penalizes at the same time overlap with modules that have already been 

reported (for details, see our accompanying paper). 

• output file greedy cover: outputModuleSelection.m 
= name of the output file after module selection 

• number of greedy modules: 100 
= the number of modules that should be selected 

• data folder: dataFolder 
= folder where the input files for the module detection step can be found 


