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ADDITIONAL DATA FILE 7: DISTILLER algorithm 
 

In this study we developed ‘DISTILLER’ (Data Integration System To Identify Links in 

Expression Regulation) a data integration framework that searches for transcriptional modules by 

combining expression data with information on the direct interaction between a regulator and its 

corresponding target genes. The inferred modules consist of co-expressed genes, their 

corresponding regulator(s), and the experimental conditions of the expression data for which the 

selected genes are co-expressed. 

 

Our methodology consists of three steps (see Figure S1): (1) the identification of seed modules; 

(2) the reduction of the set of all seed modules to a manageable set of non-redundant (small 

overlap) and significant (association in the data cannot be explained by chance) seed modules; 

and (3) the extension of the thus obtained seed modules with additional genes. 

 

Although our approach can be extended to any number of input matrices (data sources), we used 

two input matrices to generate the results in this paper: 

• An appropriately normalized expression data compendium A with dimensions CG
NN × , 

where G
N indicates the total number of genes in the compendium and C

N the total number 

of conditions. 

• A binary ‘regulatory motif matrix’ R (input interaction matrix) with dimensions RG
NN × , 

where RN is the total number of regulators for which motif data is available. Each element 

rip of this matrix indicates whether the upstream region of a specific gene i contains a 

statistically significant motif instance of the known regulatory motif model of that 

specific regulator p. 
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Figure S1: caption see page 3. 
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Figure S1: The different steps of the DISTILLER algorithm.  
A) Motif matrices (indicated by a triangle, star, square, pentagon and circle) obtained from RegulonDB 
were used to screen the genome of E. coli. As such a score was assigned to each motif-gene combination. If 
this score was larger than a specific threshold, we assume that the motif is present in the promoter region of 
a gene. Microarray experiments were collected from the three large microarray databases [39-41] and 
subsequently grouped in a compendium. These two data sources are the input for DISTILLER. B) In the 
first step, DISTILLER will search the seed modules. A seed module is a set of genes that is co-expressed in 
a subset of conditions and that have minimum one motif in their promoter regions in common. All possible 
seed modules can be identified very efficiently by using an algorithm based on CHARM [44]. Because of 
noise in the data, the output may consist of partially redundant modules, for instance, modules differing 
from each other in a gene only. In our example, three groups of partially redundant modules were identified 
(indicated by identical symbols of different sizes). Two modules of one such group are shown: the first 
module contains four genes that have one motif in common (the green square), whereas the second module 
consists of only three genes that share two motifs (green square and red star). These modules can thus be 
considered to be partially redundant. C) In the module selection step, the most interesting modules are 
therefore selected one by one depending on their statistical significance and the extent to which they 
contribute to the covering of the complete solution space (and thus do not overlap with modules that had 
already been selected). In our example, the most interesting module of each group was selected. For 
instance, the module containing three genes and two motifs was selected. D) In the final module extension 
step, additional genes are recruited that did not pass the stringent seed discovery step but should be 
considered part of the module (e.g. downstream operon genes). The module in the example could as such 
be extended with the operon genes (G5-B and G5-C) that belong to the same operon as gene G5-A. In 
addition, gene G7 was recruited with the more relaxed criteria, like a lower threshold for the motif score, 
caused the assignment of the two motifs (green square and red star) to this gene G7. 
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2.1 Seed modules 
Let g(m) be the set of gene indices that correspond to genes in module m. DISTILLER initially 

identifies seed modules that satisfy three constraints: 

 

(CG) The module should contain a minimum number G of genes (i.e. gene content threshold), 

or G≥(m)g . 

(CR)  All genes g(m) in the module should contain motif instances for a sufficient number R of 

common, a priori unspecified regulators. Let 1 represent an all-ones vector of appropriate 

dimensions. Then, this constraint can be formulated mathematically as 

{ } Rp
p

≥= (m)
,(m)| gR1 g

T . 

(CC) All genes g(m) in the module should be significantly co-expressed in a sufficiently large, a 

priori unspecified set of experimental conditions. We indicate this required number of 

conditions by C. In order to calculate the maximal valid condition set c(m) given a certain 

gene set g(m), we first compute the difference between the largest and smallest expression 

levels in the gene set for each of the conditions: )min()max(
,, )()( jjj mmBW

gg
A−= A . We call 

BWj the bandwidth for condition j. Subsequently, these bandwidths are sorted in 

increasing order to obtain a sorted bandwidth sequence )(s
jBW  that satisfies 
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j BWBWBW +− ≤≤  (see Figure S2). The sequence )(s

jBW  is then compared with a pre-

specified threshold bandwidth sequence )(th
jBW  that is sorted as well: 
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th
j BWBWBW +− ≤≤ . Gene set g(m) is said to be co-expressed in Cmax conditions if the 

sorted bandwidth sequence )(s
jBW is completely within the threshold bandwidth sequence 

)(th
jBW for max1 Cj ≤≤ , i.e. if )()( th

j
s

j BWBW ≤  for max1 Cj ≤≤ . Constraint CC is satisfied if 

this property holds for CC ≥max . There are various ways to choose the pre-specified 

bandwidth threshold sequence. One data-driven approach is described below. 

 

A naive exhaustive search for valid modules as defined above would require checking all possible 

combinations of genes, motif instances, and experimental conditions. This is unfeasible for data 

sets of any reasonable size. This issue is solved by using the CHARM algorithm [44].  
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Figure S2: A) Definition of the bandwidth and its use for condition selection 
The top half shows hypothetical expression profiles for three different genes. For each of the four 
conditions, the bandwidth for this set of genes is indicated with a vertical bidirectional arrow. The lower 
half shows the bandwidth sequence for these expression data, obtained by sorting the bandwidths in 
increasing order. Two threshold bandwidth sequences (BW(th,1) and BW(th,2)) are shown as well (bold lines). 
If we were to use BW(th,1), this set of three genes would qualify as a module for the expression data, since 
the bandwidth sequences lies entirely below BW(th,1). However, if we were using BW(th,2), this set of genes 
would not qualify as a module. 
B) Selection of the band width threshold based on random data 
To illustrate how a threshold bandwidth sequence is obtained from the data, we show five bandwidth 
sequences corresponding to randomly sampled sets of genes. The dashed line is a candidate threshold 
bandwidth sequence, obtained by connecting all second smallest values for all four sorted conditions. The 
threshold bandwidth sequence that is actually used is the one that qualifies a fixed fraction of randomly 
sampled gene sets as a module (box p-value). 
 
 
Determining the threshold bandwidth sequence 

To determine the threshold bandwidth sequence )(th
jBW , we use the pre-specified probability that 

a randomly sampled gene set of size Gk passes the module constraint on the expression data (‘box 

p-value’ , see Running parameters). We randomly select a large number NS of random gene sets of 

size Gk, and compute the sorted bandwidth sequence for each set. Subsequently, we determine the 

j’ th position of the b’ th candidate threshold bandwidth sequence as b’ th largest elements among 
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all j’ th positions in those sorted bandwidth sequences. The consequence is that all candidate 

threshold bandwidth sequences are monotonically increasing, and different candidate threshold 

bandwidth sequences never intersect. Finally, the threshold bandwidth sequence b that achieves 

our pre-specified probability (or a smaller probability) is selected and used as )(th
jBW  in the above 

procedure. Figure S2b illustrates the threshold bandwidth selection process and the verification of 

constraint CC on a hypothetical example. 

 

CHARM based algorithm for closed itemset mining 
A naive exhaustive search for valid modules as defined above would require checking all possible 

combinations of genes, motif instances, and experimental conditions. To drastically restrict the 

search space without running the risk to skip valid modules, we use the observation that g(m) can 

only satisfy the constraints CG, CR and CC if at least all its subsets do so as well. This fact can be 

restated in terms of the subset relation between gene sets, which represents a partial order 

relation: ‘the module properties vary monotonically over the subset partial order’ . A consequence 

is that we can search for modules by starting with very small gene sets (containing just one gene), 

gradually expanding them, and stopping (or pruning) the search once a gene set is reached for 

which one of the module properties is violated. This pruning step results in a massive speed-up, 

making the method applicable to large data sets. 

More formally, we can represent all gene sets and their partial order in a lattice (see Figure S3). 

This is a directed graph with gene sets as nodes and arrows from any gene sets to its supersets 

containing one additional gene. The search for modules can then be performed by means of a 

breadth-first traversal, depth-first traversal, or any other traversal of the lattice. In our previous 

work we have adopted a breadth-first strategy that resembles the Apriori algorithm [19,65]. In the 

current work we use a depth-first search more similar to CHARM [44]. The depth-first strategy 

guarantees a better scalability, especially on non-sparse data sets (such as the expression 

compendium), which was necessary to obtain the results in the current paper. Even though the 

exploration of all gene sets has become feasible in this way, the number of modules may still be 

impractically large. DISTILLER solves this problem by reporting only closed modules. These are 

modules that cannot be further extended by any other gene without reducing the number of motifs 

that all of its genes share, or the number of conditions in which its genes are expressed similarly. 

DISTILLER applies techniques used in CHARM to efficiently ignore non-closed modules while 

selecting all the closed ones. We report only closed modules with a number of genes larger than 

or equal to a threshold G (the ‘gene content threshold’ ) because only those modules containing a 

minimum number of genes are interesting. 
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Figure S3: The lattice structure of the space of gene sets. 
Four genes are represented by letters A, B, C, and D. Each node corresponds to a gene set (a potential 
regulatory module). The lattice structure reflects the subset relation: an arrow points from node x to node y 
if x is a subset of y. The efficiency of our algorithm relies on the fact that if a certain node does not qualify 
as a module, none of its descendants in the lattice will. This means that we can search for modules by 
starting at the top of the lattice (with the empty gene set) and exploring it by a depth first traversal. As soon 
as a gene set is reached that does not qualify as a module, the entire lattice below it can be prune. 
 

2.2 Selecting interesting non-redundant modules 
 

Despite the massive reduction in the number of modules achieved by using CHARM, the output 

may still be too large to explore: small amounts of noise in the data may cause one module to 

appear as a large number of separate partially overlapping modules, all very similar in gene, 

regulator, and condition content. To address this problem we apply an iterative procedure that 

selects the most interesting modules one by one. It takes into account the significance of 

individual modules but penalizes at the same time overlap with modules that have already been 

reported.  
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We initialize the procedure by attaching an ‘interest score’  to every module. This interest score is 

obtained by multiplying the p-value of the module expression pattern with the p-value of the 

module motif content. For the motif data, the latter p-value is the probability that a module with 

at least the same number of genes and containing these motifs is found by chance. The 

corresponding null distribution assumes that each motif is present in all genes with the same 

probability. We estimate this probability from the data by taking the ratio of the number of genes 

with the motif at hand to the total number of genes. The p-value of the module motif content can 

then be computed using the cumulative binomial distribution. For the expression data, the p-value 

of the pattern is the probability that a module with at least the same number of genes and 

containing the same conditions is found by chance. The corresponding null distribution is 

specified as being invariant with respect to permutations of the gene expression values within the 

same condition. The corresponding p-value of the module expression pattern can then be 

computed by Monte Carlo sampling. The interest score is obtained by multiplying the p-values 

for both separate data sources. 

The interest score allows ranking all modules according to decreasing significance. However, it is 

still possible that several mutually redundant (heavily overlapping) modules rank high. In the first 

step of the iterative procedure the most interesting (top ranking) module is selected. Then, in each 

of the following steps another module is selected in such a way that it adds as much information 

as possible to the modules that have already been already selected. To do this, we update the null 

distribution for the motifs each time a new module has been selected. This is done by changing 

the probability that a gene has a motif instance to one in the null model, for those entries in the 

motif matrix that are already covered by previously selected modules. The result is that the 

interest scores of modules that heavily overlap with previously selected modules increase, such 

that they move down in the ranking. In every iteration, we select the most interesting module with 

respect to the corresponding adapted null distribution.  

 

DISTILLER selects conditions in which the genes of a module are significantly co-expressed. 

However, in some of these conditions the expression ratios of the modules genes will be close to 

zero, indicating that their expression is not varying (i.e. spurious conditions). Therefore as an 

additional post-processing step, conditions in a module for which the coefficient of variation 

(ratio of the gene expression standard deviation over the gene expression mean) exceeded a 

specified threshold were excluded from the modules. 
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2.3 Seed module extension 
 

In a subsequent extension step we recruit additional candidate module genes that did not pass the 

stringent seed discovery step but should be considered part the module (e.g. downstream operon 

genes that do not contain a motif instance in their promoter regions but are subject to its 

regulatory influence).  

 

The relaxed criteria for adding additional genes to the module are the following: 1) the gene’ s 

expression profile should have a correlation with the module’ s mean expression profile of at least 

D� IUDFWLRQ� � RI� WKH�PRGXOH� FRUUHODWLRQ� �GHILQHG� DV� WKH� ORZHVW� FRUUHODWLRQ� YDOXH� EHWZHHQ� D� VHHG�
gene’ s expression profile and the average expression profile for the modules conditions), and 2) 

the genes should have a motif instance with p-YDOXH�EHORZ�D�WKUHVKROG� ��%RWK�UHTXLUHPHQWV�KDYH�
to be fulfilled unless a gene is part of an operon for which the first gene is present in the seed 

module. In this case only the first criterium has to be satisfied.  

 

2.4 Running parameters 
 

To test the influence of different parameters, we compared results obtained with different settings 

with known interactions from the RegulonDB network by calculating the recall and precision: 

� Recall = 
FNTP

TP
+

 

� Precision = 
FPTP

TP
+

 

where TP = true positives, FN = false negatives, FP = false positives*. In this case, TP+FN equals 

the total number of interactions in RegulonDB, i.e. 736 interactions, while TP+FP is the total 

number of interactions reported by DISTILLER. The TP are confirmed interactions present in 

RegulonDB that were also identified by DISTILLER. Hence, recall and precision indicate the 

trade-off between the number of predicted and the percentage of reported interactions that 

corresponds to known links in the regulatory network. Our goal is to obtain high confident 

predictions, corresponding to parameter settings that yield a large product of recall and precision. 

For each parameter setting the 200 best-scoring non-redundant modules were selected (see 

                                                 
* Strictly speaking, these interactions could be false positive interactions or novel, yet unknown 
interactions. By using precision-recall rather than sensitivity-specificity we were able to deal with this 
uncertainty in a meaningful way.  
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section 2.2). Subsequently the recall and precision were calculated for the best-scoring module, 

the two best-scoring modules, the three best-scoring modules, etc. All tested parameter settings 

are shown in Table S1. We varied the minimum number of genes in a module (i.e. the gene 

content threshold), the minimum number of conditions in which the genes should be co-

expressed, the p-value of the bandwidth threshold and the motif score threshold. The recall for the 

different parameter settings is shown in Figure S4, the precision in Figure S5 and the product of 

the precision and recall in Figure S6.  

In general, modules obtained with a motif threshold of 0.01 clearly yield a lower recall and 

precision than modules obtained with motif threshold 0.001. This means that with a lower motif 

threshold we recover less known RegulonDB interactions (at least, in the top 200 modules) and 

obtain many more predicted interactions. Since we want to both study the condition dependency 

of interactions and obtain reliable novel interactions, a motif threshold of 0.001 clearly is the 

better choice.  

Modules obtained with a bandwidth p-value of 0.0001 correspond to a larger recall and a slightly 

smaller precision than those obtained with a bandwidth p-value that equals 0.00001. From Figure 

S6 it is clear that the product of recall and precision is clearly better for modules obtained with a 

lower p-value. These p-values are not as stringent as they may seem at first sight: in a set of 4000 

genes, for instance, there are on the order of 1e10 possible sets of three.  

Changing the gene content threshold from three to four genes has a positive influence on the 

recall, while the precision decreases. The product of precision and recall is however better for a 

gene content threshold of four genes. To verify that condition selection indeed has a beneficial 

effect, we also tested parameter settings where the minimum number of conditions in a module 

was set equal to all conditions (870).  From Figure S6 it is clear that although a rather high 

precision can be obtained with all conditions, the recall was low in those runs.  

From the above analysis, it was clear that parameter setting 14 was most likely to yield 

biologically relevant predictions. To choose the number of modules for further biological 

analysis, we checked how the product of precision and recall changed over the number of 

modules (see Figure S6). No large changes were observed in the last 50 modules, indicating 

increasing redundancy of the additionally selected modules. We therefore choose to keep 150 

modules in our further analysis.  

In summary, parameter settings were selected such that the seed module consists of at least four 

genes (i.e. gene content threshold) that share at least one motif and 50 conditions. The threshold 

for the p-value of the motif instances was set to 0.001. In order to choose the box threshold, 

100000 randomizations (random sets of four genes) were carried out and the box p-value 
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threshold was set to 0.0001. In the post-processing steps, a subset of 150 minimally redundant 

modules was selected, and the threshold for the coefficient of variation was set to 0.6. For the 

seed module extension step, correlation parameter  was set to 90% and the relaxed p-value 

threshold  to 0.05. 
 

Table S1: Different parameter settings that were used to assess the parameter sensitivity. No. conditions: 
the minimum number of conditions in which a set of genes should be co-expressed; Bandwidth p-value: p-
value to determine the threshold on the band width sequence; Motif threshold: the minimum p-value a 
motif instance should have; No. genes: the minimum number of genes in a module. 
 

Test No. conditions Bandwidth p-value Motif threshold No. genes 

Parameter setting 1 50 0.00001 0.01 3 
Parameter setting 2 50 0.00001 0.01 4 
Parameter setting 3 50 0.0001 0.01 3 
Parameter setting 4 870 0.00001 0.01 3 
Parameter setting 5 870 0.00001 0.01 4 
Parameter setting 6 870 0.0001 0.01 3 
Parameter setting 7 870 0.00001 0.001 3 
Parameter setting 8 870 0.00001 0.001 4 
Parameter setting 9 870 0.0001 0.001 3 
Parameter setting 10 870 0.0001 0.001 4 
Parameter setting 11 50 0.00001 0.001 3 
Parameter setting 12 50 0.00001 0.001 4 
Parameter setting 13 50 0.0001 0.001 3 
Parameter setting 14 50 0.0001 0.001 4 

 

 
Figure S4: Recall for different parameter settings. For each parameter setting, recall was calculated for a 
selection of up to 200 best-scoring non-redundant modules. Parameter setting 14 was selected for further 
use in the paper. Clearly, recall was best for this parameter setting. 
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Figure S5: Precision for different parameter settings. For each parameter setting, precision was 
calculated for a selection of up to 200 best-scoring non-redundant modules. Precision of parameter setting 
14 is better than those of parameter setting 1-6, but it is not optimal. Figure S6, however, illustrates how the 
product of precision and recall still favors setting 14 over the other parameter settings. 
 
 

 
Figure S6: Product of precision and recall for different parameter settings. For each parameter setting, 
precision and recall were calculated for a selection of up to 200 best-scoring non-redundant modules. This 
plot allows to check for the trade-off between good precision and good recall. Parameter setting 14 
outperforms the other settings and was therefore selected for futher use in the remainder of the paper. 


