
FULL CONDITIONAL DISTRIBUTIONS 
 
The joint posterior distribution of interest can be written as . Here, g is 
the vector of binary gene labels, c the vector of binary condition labels, θ the vector of 
model parameters, ψ the total set of hyperparameters (κ, ν, s, ϕ, ξg0, ξ g1, ξc0, ξ c1), X the 
expression data matrix (with rows referring to genes, and columns to conditions), Β(ξg1, 
ξg0) the Beta prior distribution on the probability that a gene belongs to the bicluster, 
Β(ξc1, ξc0) the Beta prior distribution on the probability that a condition belongs to the 
bicluster,   
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Derivation of full conditional Bernoulli distribution for the gene labels 
 

1. Assume that the prior probability that a gene (condition) label equals one is given 
by a Beta distribution: 
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2. The probability distribution of a collection g of n binary gene labels is then found 
by integrating out over this (conjugate) Beta prior distribution: 
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n refers to the total number of genes and ║g║1 to the one norm of the current 
(binary) gene label vector (number of genes currently in the bicluster).  
 

3. The derivation for the length m vector of binary condition labels c is analogous, 
and leads to: 
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4. Now consider the full conditional distributions of the gene labels. The conditional 

for gene label i is modeled by a Bernoulli distribution with parameter αi , that 
gives the probability that the label equals one: 
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In the above, Xk. indicates the k-th row in the expression matrix X and i≠g  refers 
to the set of all gene labels except for label i.  
 

5. Similarly, an expression for 1-αi can be derived:  
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6. Now, the ratio of those two expressions has a simple form and an elegant 
interpretation, as discussed in some detail in the main text: 
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The last equation is a direct consequence of the result described under 2. 
 
Missing values are dealt with naturally in this expression, by excluding them from 
the likelihood ratio calculations (or, equivalently, by assuming the ratio for the 
corresponding condition equals one). If the expression values for a certain gene 
are missing in all bicluster conditions, the score of the corresponding gene is 
completely determined by the prior factor. 
 

Derivation of full conditional Bernoulli distribution for the condition labels 
 

The odds for the Bernoulli parameters of the condition label conditionals can be obtained 
similarly:  
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Again, a Beta prior allows introducing prior knowledge on the bicluster size. Compared 
to the gene label conditional distribution, an additional second likelihood term appears 
due to the fact that the likelihood ratio for the genes in column j is in general different 
from one, even if a gene is part of the background. If condition label j is zero, the entire j-
th column is captured by one background model (bgd,0). On the other hand, if the j-th 
column label equals one, the background model that describes the expression of those 
background genes should only be constructed with the background genes (bgd,1). So, 
although we keep the model parameters fixed here, strictly speaking there are two 
background models rather than one single model. In most cases, however, this distinction 
is primarily a technical issue and the difference between bgd,0 and bgd,1 only matters 
when very large biclusters occur. In other words, the last factor is approximately equal to 
one. It is a result of the asymmetrical nature of the patterns we are looking for (‘striped’ 
biclusters rather than constant-value biclusters). 

 
Missing values are dealt with in a similar way as for the gene labels. 
 
Derivation of full conditional Bernoulli distribution for model parameters 
 
Due to conjugacy, the full conditional distributions for the model are in the same form as 
the priors.  



 
1. One can easily derive that for the mean, the product of the normal likelihood with 

the normal prior (conditioned on σ) leads to a posterior conditional normal 
distribution for the mean (conditioned on σ). 

  
2. Similarly, combined with a normal likelihood, the scaled inverse χ2 prior on σ2 

gives rise to a scaled inverse χ2 posterior on σ2. We briefly sketch the derivation: 
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Plugging in the expression for the Normal distribution of and the 

scaled inverse χ2
 distribution of  yields: 
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To simplify notation, we did not add the superscript ‘bcl’ or ‘bgd’. Depending on 
those superscripts, m is either the set of genes in the background (1-g) or in the 
bicluster (g) and ║m║1 refers to the corresponding number of genes. 
 
Combining the above expressions yields the full conditional posterior distribution 
for the variance: 
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This interpretation of the full conditionals for the model parameters directly motivates the 
parameterization of the prior, as it allows to interpret both κ and ν as a number of prior 
observations (sometimes referred to as pseudocounts) associated with the prior. For a 
discussion on these and other conjugate priors, we refer the reader to standard textbooks 
on Bayesian statistics (Gelman A.B. et al., 2004).  
 
 
SCORING MEASURES 
 
Biclustering results were scored with module recovery and bicluster relevance scores as 
described in (Prelic et al., 2006). The module recovery score indicates how well the gene 
content of the ‘ideal’ modules is on average reflected in the (best matching bicluster of 
the) bicluster results: 
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In the above, M1 indicates the set of biclusters or modules that are considered ‘ideal’ or 
‘real’, M2 indicates the set of biclusters that are really returned by the algorithm. Hence, 
module recovery runs over all ‘ideal’ biclusters and averages out the match scores (in 
terms of gene content G) of the best matching biclusters from the obtained biclustering 
results. 
 
The bicluster relevance score SBR is obtained by interchanging the roles of the ‘ideal’ and 
reported biclusters. It is related to the relevance of the set of modules in the output. In 
other words, it penalizes ‘incorrect’ modules in the output.  
 
INITIALIZATION 
 
A dummy gene with a profile equal to the mean profile of the seed genes is added to the 
data set. When the seed contains more than one gene, this yields an improved 
initialization for the resolution sweep (start with one dummy gene and all conditions, 
rather than no genes and no conditions). In all cases, the label of the dummy gene is 
initially set to 1 while all other gene labels equal 0. When reporting likelihoods, we do 
not include the likelihood of the dummy gene.  
 
BACKGROUND MEAN AND VARIANCE PRIORS 
 
We do not make the background prior parameters κbgd and νbgd

 available to the user, 
because any background of interest contains many genes and hence the likelihood (of the 
background data, including all genes except for those that are currently in the bicluster) 
and the prior (constructed with all genes except for the seed genes) usually agree. 
Therefore, in most cases the strength of these priors is rather unimportant. However, to 
avoid those cases in which very large modules push away the background distribution, 
we require the background statistics to remain close to the expected ones (equal in terms 
of means, similar in terms of variance) by setting the number of prior observations for the 



background variance (νbgd) equal to the total number of genes by default. The outcome of 
the algorithm is robust against the precise choice of these background parameters (and 
more robust if the module signal is stronger). 
 
MODULE SELECTION VIA THE AIC CRITERION 
 
We assume that interesting resolutions are those resolutions for which the corresponding 
modules score better than modules at neighboring (slightly smaller or larger) resolutions, 
according to some score function. The most obvious score function is the posterior 
probability. However, the Conditional Maximization approach only assures we remain in 
the local posterior mode without knowing, for instance, the height of the distribution in 
that node. The posterior probability is therefore unknown. A related quantity is the 
likelihood (of bicluster and background together) given the models at a certain resolution. 
However, likelihood scores favor models for which the bicluster contains more 
conditions: 
 
- In a bicluster condition, the expression is modeled by a mixture of two Gaussian 

distributions (4 parameters), whereas expression in a background condition is 
modeled by only one Gaussian (2 parameters). 

- Therefore, the model complexity increases with the number of conditions in the 
bicluster. 

- A complexer model is expected to fit the data better (even if it is not really a ‘better’ 
model). 

 
Akaike’s Information Criterion (Akaike, 1974) describes the tradeoff between model fit 
(likelihood) and model complexity:  
 
AIC score = 2 l – 2k  with l  the log likelihood and k  the number of model parameters 
 
As such, it represents a sensible choice for the score function. We use k = 2 m + 2║c║1

 2 
with m the total number of conditions, reflecting 2 parameters for each background 
probability distribution and 2 additional parameters for each bicluster probability 
distribution. To limit the functional enrichment analysis, we only considered the most 
pronounced1 local optima in the AIC score. 
 
RESOLUTION SWEEP 
 
Setup: For simplicity, assume there is only one gene in the query set and the priors on 
mean and variance are infinitely strong.  
 
The Conditional Maximization (CM) resolution sweep approach then simply consists of 
an iteration of the following steps: 
  

1) Start with zero variance around the seed profile 
                                                 
1 If (aic)i > (aic)k  for  k ∈ {i - 2, i – 1, i +1, i+2}, the optimum in i was considered more pronounced than if 
the condition only holds for k ∈ {i – 1, i +1}. 



2) Apply a posterior mode search algorithm (via iteration of conditional 
maximization steps) 

3) After convergence, increase the prior variance slightly and repeat the mode 
search. Some conditions may be lost (or possibly gained) and some genes may be 
gained (or possibly lost). 

4) Iterate the previous steps over a prespecified resolution range 
5) Report ‘interesting’ modules by studying the evolution of the Akaike Information 

Criterion 
 
Figure 1 illustrates how the general setup looks like in the probability landscape. Figure 2 
shows an example plot on an artificial data set in scenario S2A (noise level 0.06), using 
gene 1 and 2 as query. The correct module is characterized by a very pronounced local 
optimum in the AIC score, as shown by the colored marks. Figure 3 shows a similar plot 
on an artificial data set in scenario S1B (overlap parameter 7), using genes. Again, the 
correct module corresponds to a local optimum in the likelihood. 
 

 
Figure 1: General resolution sweep setup. a) represents a situation with a small prior variance. From 
a) to b) the variance is gradually increased and some conditions (shaded gray) may no longer belong 
to the module. c) and d) show the (hypothetical 2D) corresponding AIC score function and the 

a) c) 

Prior variance
b) d) 



evolution in the corresponding landscape upon variation of the prior variance. Every dot 
corresponds to a local optimum in the posterior for the corresponding prior setting. However, the 
posterior landscape itself remains unknown2. Therefore, a reasonable way to select interesting 
modules on the resolution sweep path is to identify local optima (red dots) in the AIC score on the 
resolution sweep path. 
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Figure 2: Example plot on an artificial data set in scenario S2A (noise level 0.06), using gene 1 and 2 
as query (200 iteration). The correct module is characterized by a very pronounced local optimum in 
the AIC score, as shown by the colored marks.  
 

                                                 
2 we only assure we remain in the local posterior mode without knowing, for instance, the height of the 
distribution in that node 
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Figure 3: Example plot on an artificial data set in scenario S1B (overlap parameter 7), using gene 17 
and 18 as query (100 iterations). The correct module is characterized by a very pronounced local 
optimum in the AIC score, as shown by the colored marks. As the prior variance increases, the 
bicluster evolves from a module of 17 genes to the union of two modules (27 genes = 17 genes of 
module 1 + 17 genes of module 2 – 7 genes in overlap) around iteration 80. This new module also 
corresponds to a local optimum in the AIC score, but the absolute value of its score is smaller. 
 
 
AN INTUITIVE COMMENT ON THE NOTION OF RESOLUTION 
 
In order to understand the effect of the resolution sweep, it is important to realize that we 
do not define resolution in terms of the number of genes or conditions in the bicluster 
directly. Instead, ‘resolution’ is related to the notion of bicluster homogeneity or 
coherence, reflected by the variances of the Gaussian distributions for the bicluster 
expression values in the selected conditions (see general introduction and introduction to 
section 3 for a definition of ‘resolution’). Of course, if the homogeneity constraint is 



made more stringent, the corresponding valid patterns also tend to contain less entries of 
the data matrix.  
 
The sweep is initialized with small variance (high resolution, good homogeneity) and the 
corresponding bicluster contains few genes (one gene at initialization) exhibiting tight 
coexpression over many conditions. When the variance is increased, less homogeneous 
patterns are allowed. This is what we refer to as ‘lower resolution’. Intuitively, it is clear 
that these patterns can contain more genes because more profiles may fit well in a wider 
band around the mean seed profile. At the same time, for a number of conditions the 
corresponding profiles may not fit well enough (as quantified by the likelihood ratio of 
the bicluster distribution fit to the background distribution fit) and hence the number of 
conditions decreases in most cases, especially when there is a crisp increase in the 
number of genes.  
 
In addition, it is important to realize that the algorithm always compares the model fit of 
the bicluster and the background distributions.  An increase in bicluster variance 
(decrease in resolution) makes the bicluster distributions wider but also less peaked 
(lower). This change affects the bicluster content via the likelihood ratio (between 
bicluster and background) in the full conditional distributions for the labels. Therefore, it 
is not necessarily so that an increase in resolution corresponds to an increase in bicluster 
size. However, as pointed out above, there is often a connection between resolution and 
the number of data matrix entries in the bicluster patterns.  
 
In summary, we relate resolution to coherence (of expression values in the included 
conditions) rather than the number of genes or conditions in the bicluster. The bicluster 
size at various resolutions depends on the local optimum in the posterior that we are 
tracking. 
 
TIME COMPLEXITY 
 
The time complexity per iteration is linear in the number of conditions and the number of 
genes. Indeed, all algorithmic steps scale linearly with the number of entries in the data 
matrix. This is also illustrated in Figure 4. 
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Figure 4: Computational complexity increases linearly with number of conditions for fixed number 
of genes (left) and with number of genes for fixed number of conditions (right). 
 
 
ITERATIVE SIGNATURE ALGORITHM 
 
The Iterative Signature Algorithm (Bergmann et al., 2003) intuitively defines a bicluster 
as a set of genes and conditions with significant average overexpression or 
underexpression of the bicluster genes in the bicluster conditions. The exact definition 
relies on fixed points of an alternating iterative procedure in which genes are scored with 
respect to the condition set and conditions with respect to the gene set. In every step, the 
scores are thresholded using two user defined parameters (one for the gene scores and 
one for the condition scores) to eliminate noise and enforce sparseness. The initial gene 
set determines to which fixed point the algorithm converges. One can either use a clever 
initialization (query-based), or many random initializations (global biclustering). 
 
GENE RECOMMENDER 
 
The Gene Recommender algorithm (Owen et al., 2003) consists of two steps. In a first 
step, experimental conditions are scored with a preference for experiments with extreme 
expression levels and experiments with tight clustering of expression levels. A small grid 
of condition score thresholds is explored. In a second step, genes are scored based on the 
statistical significance of the correlation of their expression profiles with the query in the 
selected conditions. The algorithm is able to work with missing values and returns a 
ranked list of genes. 
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