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Molecular Classification of
Cancer: Class Discovery and

Class Prediction by Gene
Expression Monitoring

T. R. Golub,1,2*† D. K. Slonim,1† P. Tamayo,1 C. Huard,1

M. Gaasenbeek,1 J. P. Mesirov,1 H. Coller,1 M. L. Loh,2

J. R. Downing,3 M. A. Caligiuri,4 C. D. Bloomfield,4

E. S. Lander1,5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

The challenge of cancer treatment has been to
target specific therapies to pathogenetically
distinct tumor types, to maximize efficacy
and minimize toxicity. Improvements in can-
cer classification have thus been central to
advances in cancer treatment. Cancer classi-
fication has been based primarily on morpho-
logical appearance of the tumor, but this has
serious limitations. Tumors with similar his-
topathological appearance can follow signif-
icantly different clinical courses and show
different responses to therapy. In a few cases,
such clinical heterogeneity has been ex-
plained by dividing morphologically similar
tumors into subtypes with distinct pathogen-
eses. Key examples include the subdivision
of acute leukemias, non-Hodgkin’s lympho-
mas, and childhood “small round blue cell
tumors” [tumors with variable response to
chemotherapy (1) that are now molecularly
subclassified into neuroblastomas, rhabdo-
myosarcoma, Ewing’s sarcoma, and other
types (2)]. For many more tumors, important
subclasses are likely to exist but have yet to

be defined by molecular markers. For exam-
ple, prostate cancers of identical grade can
have widely variable clinical courses, from
indolence over decades to explosive growth
causing rapid patient death. Cancer classifi-
cation has been difficult in part because it has
historically relied on specific biological in-
sights, rather than systematic and unbiased
approaches for recognizing tumor subtypes.
Here we describe such an approach based on
global gene expression analysis.

We divided cancer classification into two
challenges: class discovery and class predic-
tion. Class discovery refers to defining pre-
viously unrecognized tumor subtypes. Class
prediction refers to the assignment of partic-
ular tumor samples to already-defined class-
es, which could reflect current states or future
outcomes.

We chose acute leukemias as a test case.
Classification of acute leukemias began with
the observation of variability in clinical out-
come (3) and subtle differences in nuclear
morphology (4). Enzyme-based histochemi-
cal analyses were introduced in the 1960s to
demonstrate that some leukemias were peri-
odic acid-Schiff positive, whereas others
were myeloperoxidase positive (5). This pro-
vided the first basis for classification of acute
leukemias into those arising from lymphoid
precursors (acute lymphoblastic leukemia,
ALL) or from myeloid precursors (acute my-
eloid leukemia, AML). This classification
was further solidified by the development in
the 1970s of antibodies recognizing either
lymphoid or myeloid cell surface molecules
(6). Most recently, particular subtypes of

acute leukemia have been found to be asso-
ciated with specific chromosomal transloca-
tions—for example, the t(12;21)(p13;q22)
translocation occurs in 25% of patients with
ALL, whereas the t(8;21)(q22;q22) occurs in
15% of patients with AML (7).

Although the distinction between AML
and ALL has been well established, no single
test is currently sufficient to establish the
diagnosis. Rather, current clinical practice
involves an experienced hematopathologist’s
interpretation of the tumor’s morphology,
histochemistry, immunophenotyping, and cy-
togenetic analysis, each performed in a sep-
arate, highly specialized laboratory. Although
usually accurate, leukemia classification re-
mains imperfect and errors do occur.

Distinguishing ALL from AML is critical
for successful treatment; chemotherapy regi-
mens for ALL generally contain corticoste-
roids, vincristine, methotrexate, and L-asparagi-
nase, whereas most AML regimens rely on a
backbone of daunorubicin and cytarabine (8).
Although remissions can be achieved using
ALL therapy for AML (and vice versa), cure
rates are markedly diminished, and unwarrant-
ed toxicities are encountered.

We set out to develop a more systematic
approach to cancer classification based on the
simultaneous expression monitoring of thou-
sands of genes using DNA microarrays (9). It
has been suggested (10) that such microar-
rays could provide a tool for cancer classifi-
cation. Microarray studies to date (11), how-
ever, have primarily been descriptive rather
than analytical and have focused on cell cul-
ture rather than primary patient material, in
which genetic noise might obscure an under-
lying reproducible expression pattern.

We began with class prediction: How
could one use an initial collection of samples
belonging to known classes (such as AML
and ALL) to create a “class predictor” to
classify new, unknown samples? We devel-
oped an analytical method and first tested it
on distinctions that are easily made at the
morphological level, such as distinguishing
normal kidney from renal cell carcinoma
(12). We then turned to the more challenging
problem of distinguishing acute leukemias,
whose appearance is highly similar.

Our initial leukemia data set consisted of
38 bone marrow samples (27 ALL, 11 AML)
obtained from acute leukemia patients at the
time of diagnosis (13). RNA prepared from
bone marrow mononuclear cells was hybrid-
ized to high-density oligonucleotide microar-
rays, produced by Affymetrix and containing
probes for 6817 human genes (14). For each
gene, we obtained a quantitative expression
level. Samples were subjected to a priori
quality control standards regarding the
amount of labeled RNA and the quality of the
scanned microarray image (15).

The first issue was to explore whether
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there were genes whose expression pattern
was strongly correlated with the class distinc-
tion to be predicted. The 6817 genes were
sorted by their degree of correlation (16). To
establish whether the observed correlations
were stronger than would be expected by
chance, we developed a method called
“neighborhood analysis” (Fig. 1A). Briefly,
one defines an “idealized expression pattern”
corresponding to a gene that is uniformly
high in one class and uniformly low in the
other. One tests whether there is an unusually

high density of genes “nearby” (that is, sim-
ilar to) this idealized pattern, as compared to
equivalent random patterns.

For the 38 acute leukemia samples, neigh-
borhood analysis showed that roughly 1100
genes were more highly correlated with the
AML-ALL class distinction than would be
expected by chance (Fig. 2) (17). This sug-
gested that classification could indeed be
based on expression data.

The second issue was how to use a col-
lection of known samples to create a “class

predictor” capable of assigning a new sample
to one of two classes. We developed a pro-
cedure that uses a fixed subset of “informa-
tive genes” (chosen based on their correlation
with the class distinction) and makes a pre-
diction on the basis of the expression level of
these genes in a new sample. Each informa-
tive gene casts a “weighted vote” for one of
the classes, with the magnitude of each vote
dependent on the expression level in the new
sample and the degree of that gene’s correla-
tion with the class distinction (Fig. 1B) (18,
19). The votes were summed to determine the
winning class, as well as a “prediction
strength” (PS), which is a measure of the
margin of victory that ranges from 0 to 1 (20).
The sample was assigned to the winning class
if PS exceeded a predetermined threshold,
and was otherwise considered uncertain. On
the basis of previous analysis, we used a
threshold of 0.3 (21).

The third issue was how to test the validity
of class predictors. We used a two-step proce-
dure. The accuracy of the predictors was first
tested by cross-validation on the initial data set.
(Briefly, one withholds a sample, builds a pre-
dictor based only on the remaining samples,
and predicts the class of the withheld sample.
The process is repeated for each sample, and
the cumulative error rate is calculated.) One
then builds a final predictor based on the initial
data set and assesses its accuracy on an inde-
pendent set of samples.

We applied this approach to the 38 acute
leukemia samples. The set of informative
genes to be used in the predictor was chosen
to be the 50 genes most closely correlated
with AML-ALL distinction in the known
samples. The parameters of the predictor
were determined by the expression levels of
these 50 genes in the known samples. The
predictor was then used to classify new sam-
ples, by applying it to the expression levels of
these genes in the sample.

The 50-gene predictors derived in cross-
validation tests assigned 36 of the 38 samples as
either AML or ALL and the remaining two as
uncertain (PS , 0.3) (22). All 36 predictions
agreed with the patients’ clinical diagnosis.

We then created a 50-gene predictor on
the basis of all 38 samples and applied it to an
independent collection of 34 leukemia sam-
ples. The specimens consisted of 24 bone
marrow and 10 peripheral blood samples
(23). In total, the predictor made strong pre-
dictions for 29 of the 34 samples, and the
accuracy was 100%. The success was notable
because the collection included a much
broader range of samples, including samples
from peripheral blood rather than bone mar-
row, from childhood AML patients, and from
different reference laboratories that used dif-
ferent sample preparation protocols. Overall,
the prediction strengths were quite high (me-
dian PS 5 0.77 in cross-validation and 0.73

Fig. 1. Schematic illustration of methodology. (A) Neighborhood analysis. The class distinction is
represented by an “idealized expression pattern” c, in which the expression level is uniformly high
in class 1 and uniformly low in class 2. Each gene is represented by an expression vector, consisting
of its expression level in each of the tumor samples. In the figure, the data set is composed of six
AMLs and six ALLs. Gene g1 is well correlated with the class distinction, whereas g2 is poorly
correlated. Neighborhood analysis involves counting the number of genes having various levels of
correlation with c. The results are compared to the corresponding distribution obtained for random
idealized expression patterns c*, obtained by randomly permuting the coordinates of c. An
unusually high density of genes indicates that there are many more genes correlated with the
pattern than expected by chance. The precise measure of distance and other methodological details
are described in (16, 17) and on our Web site (www.genome.wi.mit.edu/MPR). (B) Class predictor.
The prediction of a new sample is based on ”weighted votes“ of a set of informative genes. Each
such gene gi votes for either AML or ALL, depending on whether its expression level xi in the sample
is closer to mAML or mALL (which denote, respectively, the mean expression levels of AML and ALL
in a set of reference samples). The magnitude of the vote is wivi, where wi is a weighting factor that
reflects how well the gene is correlated with the class distinction and vi 5 xi 2 (mAML 1 mALL)/2
reflects the deviation of the expression level in the sample from the average of mAML and mALL. The
votes for each class are summed to obtain total votes VAML and VALL. The sample is assigned to the
class with the higher vote total, provided that the prediction strength exceeds a predetermined
threshold. The prediction strength reflects the margin of victory and is defined as (Vwin 2
Vlose)/(Vwin 1 Vlose), where Vwin and Vlose are the respective vote totals for the winning and losing
classes. Methodological details are described in (19, 20) and on the Web site.
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in independent test) (Fig. 3A). The average
prediction strength was lower for samples
from one laboratory that used a very different
protocol for sample preparation. This sug-
gests that clinical implementation of such an
approach should include standardization of
sample preparation.

The choice to use 50 informative genes in
the predictor was somewhat arbitrary. The
number was well within the total number of
genes strongly correlated with the class dis-
tinction (Fig. 2), seemed likely to be large
enough to be robust against noise, and was
small enough to be readily applied in a clin-
ical setting. In fact, the results were insensi-
tive to the particular choice: Predictors based
on between 10 and 200 genes were all found
to be 100% accurate, reflecting the strong
correlation of genes with the AML-ALL dis-
tinction (24).

The list of informative genes used in the
AML versus ALL predictor was highly in-
structive (Fig. 3B). Some, including CD11c,
CD33, and MB-1, encode cell surface pro-
teins for which monoclonal antibodies have
been demonstrated to be useful in distin-
guishing lymphoid from myeloid lineage
cells (25). Others provide new markers of
acute leukemia subtype. For example, the
leptin receptor, originally identified through
its role in weight regulation, showed high
relative expression in AML. The leptin recep-
tor was recently demonstrated to have anti-
apoptotic function in hematopoietic cells
(26). Similarly, the zyxin gene has been
shown to encode a LIM domain protein im-
portant in cell adhesion in fibroblasts, but a
role in hematopoiesis has not been reported
(27).

We had expected that the genes most use-
ful in AML-ALL class prediction would sim-
ply be markers of hematopoietic lineage, and
would not necessarily be related to cancer
pathogenesis. However, many of the genes
encode proteins critical for S-phase cell cycle
progression (Cyclin D3, Op18, and MCM3),
chromatin remodeling (RbAp48 and SNF2),
transcription (TFIIEb), and cell adhesion
(zyxin and CD11c) or are known oncogenes
(c-MYB, E2A and HOXA9). In addition, one
of the informative genes encodes topoisom-
erase II, which is the principal target of the
antileukemic drug etoposide (28). Together,
these data suggest that genes useful for can-
cer class prediction may also provide insight
into cancer pathogenesis and pharmacology.

The methodology of class prediction can
be applied to any measurable distinction
among tumors. Importantly, such distinctions
could concern a future clinical outcome—
such as whether a prostate cancer turns out to
be indolent or a breast cancer responds to a
given chemotherapy. We explored the ability
to predict response to chemotherapy among
the 15 adult AML patients who had been

treated with an anthracycline-cytarabine reg-
imen and for whom long-term clinical fol-
low-up was available (29). Eight patients
failed to achieve remission after induction
chemotherapy, while the remaining seven re-
mained in remission for 46 to 84 months.
Neighborhood analysis found no striking ex-
cess of genes correlated with response to
chemotherapy, in contrast to the situation for
the AML-ALL distinction, and class predic-
tors that used 10 to 50 genes were not highly
accurate in cross-validation. We thus found
no evidence of a strong multigene expression
signature correlated with clinical outcome,
although this could reflect the relatively small
sample size. Nonetheless, we examined the
most highly correlated genes for potential
biological significance. The single most high-
ly correlated gene out of the 6817 genes was
the homeobox gene HOXA9, which was over-
expressed in patients with treatment failure.
Notably, HOXA9 is rearranged by a t(7;
11)(p15;p15) chromosomal translocation in a
rare subset of AML patients, who tend to
have poor outcomes (30). Furthermore,
HOXA9 overexpression has been shown to
transform myeloid cells in vitro and to cause
leukemia in animal models (31). A general
role for HOXA9 expression in predicting
AML outcome has not been previously sug-
gested. Larger studies will be needed to test
this hypothesis.

We next turned to the question of class
discovery. The initial identification of cancer
classes has been slow, typically evolving
through years of hypothesis-driven research.
We explored whether cancer classes could be

discovered automatically. For example, if the
AML-ALL distinction were not already
known, could it have been discovered simply
on the basis of gene expression?

Class discovery entails two issues: (i) de-
veloping algorithms to cluster tumors by gene
expression and (ii) determining whether pu-
tative classes produced by such clustering
algorithms are meaningful—that is, whether
they reflect true structure in the data rather
than simply random aggregation.

To cluster tumors, we used a technique
called self-organizing maps (SOMs), which
is particularly well suited to the task of iden-
tifying a small number of prominent classes
in a data set (32). In this approach, the user
specifies the number of clusters to be identi-
fied. The SOM finds an optimal set of “cen-
troids” around which the data points appear
to aggregate. It then partitions the data set,
with each centroid defining a cluster consist-
ing of the data points nearest to it.

We applied a two-cluster SOM to auto-
matically group the 38 initial leukemia sam-
ples into two classes on the basis of the
expression pattern of all 6817 genes (33). We
first evaluated the clusters by comparing
them to the known AML-ALL classes (Fig.
4A). The SOM paralleled the known classes
closely: Class A1 contained mostly ALL (24
of 25 samples) and class A2 contained mostly
AML (10 of 13 samples). The SOM was thus
quite effective, albeit not perfect, at automat-
ically discovering the two types of leukemia.

We then considered how one could eval-
uate such putative clusters if the “right” an-
swer were not already known. We reasoned

Fig. 2. Neighborhood analysis: ALL versus AML. For the 38 leukemia samples in the initial data set,
the plot shows the number of genes within various “neighborhoods” of the ALL-AML class
distinction together with curves showing the 5 and 1% significance levels for the number of genes
within corresponding neighborhoods of the randomly permuted class distinctions (16, 17 ). Genes
more highly expressed in ALL compared to AML are shown in the left panel; those more highly
expressed in AML compared to ALL are shown in the right panel. The large number of genes highly
correlated with the class distinction is apparent. In the left panel (higher in ALL), the number of
genes with correlation P( g,c) . 0.30 was 709 for the AML-ALL distinction, but had a median of 173
genes for random class distinctions. P( g,c) 5 0.30 is the point where the observed data intersect
the 1% significance level, meaning that 1% of random neighborhoods contain as many points as
the observed neighborhood around the AML-ALL distinction. Similarly, in the right panel (higher in
AML), 711 genes with P( g,c) . 0.28 were observed, whereas a median of 136 genes is expected for
random class distinctions.
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that class discovery could be tested by class
prediction: If putative classes reflect true
structure, then a class predictor based on
these classes should perform well.

To test this hypothesis, we evaluated the
clusters A1 and A2. We constructed predic-
tors to assign new samples as “type A1” or
“type A2.” Predictors that used a wide range
of different numbers of informative genes
performed well in cross-validation. For ex-
ample, a 20-gene predictor gave 34 accurate
predictions with high prediction strength, one
error, and three uncertains (34). The one
“error” was the assignment of the sole AML
sample in class A1 to class A2, and two of the
three uncertains were ALL samples in class
A2. The cross-validation thus not only
showed high accuracy, but actually refined
the SOM-defined classes: With one excep-
tion, the subset of samples accurately classi-
fied in cross-validation were those perfectly
subdivided by the SOM into ALL and AML

classes. The results suggest an iterative pro-
cedure for refining clusters, in which an SOM
is used to initially cluster the data, a predictor
is constructed, and samples not correctly pre-
dicted in cross-validation are removed. The
edited data set could then be used to generate
an improved predictor to be tested on an
independent data set (35).

We then tested the class predictor of the
A1-A2 distinction on the independent data set.
In the general case of class discovery, predic-
tors for novel classes cannot be assessed for
“accuracy” on new samples, because the “right”
way to classify the independent samples is not
known. Instead, however, one can assess
whether the new samples are assigned a high
prediction strength. High prediction strengths
indicate that the structure seen in the initial data
set is also seen in the independent data set. The
prediction strengths, in fact, were quite high:
The median PS was 0.61, and 74% of samples
were above threshold (Fig. 4B). To assess these

results, we performed the same analyses with
random clusters. Such clusters consistently
yielded predictors with poor accuracy in cross-
validation and low prediction strength on the
independent data set (Fig. 4B). On the basis of
such analysis (36), the A1-A2 distinction can
be seen to be meaningful, rather than simply a
statistical artifact of the initial data set. The
results thus show that the AML-ALL distinc-
tion could have been automatically discovered
and confirmed without previous biological
knowledge.

We then sought to extend the class dis-
covery by searching for finer subclasses of
the leukemias. We used a SOM to divide the
samples into four clusters (denoted B1 to
B4). We subsequently obtained immunophe-
notype data on the samples and found that the
four classes largely corresponded to AML,
T-lineage ALL, B-lineage ALL, and B-lin-
eage ALL, respectively (Fig. 4C). The four-
cluster SOM thus divided the samples along

Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
, 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML. The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the mean is 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean
are shaded in blue. The scale indicates SDs
above or below the mean. The top panel shows
genes highly expressed in ALL, the bottom panel shows genes more
highly expressed in AML. Although these genes as a group appear
correlated with class, no single gene is uniformly expressed across the class,

illustrating the value of a multigene prediction method. For a complete list
of gene names, accession numbers, and raw expression values, see www.
genome.wi.mit.edu/MPR.

B
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another key biological distinction.
We again evaluated these classes by con-

structing class predictors (37). The four
classes could be distinguished from one an-
other, with the exception of B3 versus B4
(Fig 4D). The prediction tests thus confirmed
the distinctions corresponding to AML, B-
ALL, and T-ALL, and suggested that it may
be appropriate to merge classes B3 and B4,
composed primarily of B-lineage ALL.

The class discovery approach thus auto-
matically discovered the distinction between
AML and ALL, as well as the distinction
between B-cell and T-cell ALL. These are the
most important distinctions known among
acute leukemias, both in terms of underlying
biology and clinical treatment. With larger
sample collections, it would be possible to
search for finer subclassifications. It will be
interesting to see whether they correspond to
existing subclassifications for AML and ALL
or define new groupings perhaps based on
fundamental similarities in mechanism of
transformation.

In principle, the class discovery techniques
above can be used to identify fundamental sub-
types of any cancer. In general, such studies
will require careful experimental design to

avoid potential experimental artifacts—espe-
cially in the case of solid tumors. Biopsy spec-
imens, for example, might have gross differenc-
es in the proportion of surrounding stromal
cells. Blind application of class discovery could
result in identifying classes reflecting the pro-
portion of stromal contamination in the sam-
ples, rather than underlying tumor biology.
Such “classes” would be real and reproducible,
but would not be of biological or clinical inter-
est. Various approaches could be used to avoid
such artifacts—such as microscopic examina-
tion of tumor samples to ensure comparability,
purification of tumor cells by flow sorting or
laser-capture microdissection, computational
analysis that excludes genes expressed in stro-
mal cells, and confirmation of candidate marker
genes by RNA in situ hybridization or immu-
nohistochemistry to tumor sections.

Class discovery methods could also be
used to search for fundamental mechanisms
that cut across distinct types of cancers. For
example, one might combine different can-
cers (for example, breast tumors and prostate
tumors) into a single data set, eliminate those
genes that correlate strongly with tissue type,
and then cluster the samples based on the
remaining genes.

We also describe techniques for class pre-
diction, whereby samples can be automatically
assigned to already-recognized classes. Cre-
ation of a new predictor involves expression
analysis of thousands of genes to select a set of
informative genes (we used 50 genes, although
other choices also performed well) and then
validating the accuracy of the assignments
made on the basis of these genes. Subsequent
application of the predictor then requires only
monitoring the expression level of these infor-
mative genes. We described a class predictor
able to accurately assign samples as AML or
ALL. We have also similarly constructed a
class predictor that accurately assigns ALL
samples as either T-ALL or B-ALL (38). These
class predictors could be adapted to a clinical
setting, with appropriate steps to standardize the
protocol for sample preparation. We envisage
such a test supplementing rather than replacing
existing leukemia diagnostics. Indeed, this
would provide an opportunity to gain clinical
experience with the use of expression-based
class predictors in a well-studied cancer, before
applying them to cancers with less well-devel-
oped diagnostics.

More generally, class predictors may be
useful in a variety of settings. First, class pre-

Fig. 4. ALL-AML class discov-
ery. (A) Schematic representa-
tion of two-cluster SOM. A
two-cluster (2 by 1) SOM was
generated from the 38 initial
leukemia samples, with a
modification of the GENE-
CLUSTER computer package
(32). Each of the 38 samples is
thereby placed into one of two
clusters on the basis of pat-
terns of gene expression for
the 6817 genes assayed in
each sample. Cluster A1 con-
tains the majority of ALL sam-
ples (gray squares) and cluster
A2 contains the majority of
AML samples (black circles).
(B) Prediction strength (PS)
distributions. The scatterplots
show the distribution of PS
scores for class predictors. The
first two plots show the distri-
bution for the predictor creat-
ed to classify samples as ”A1-
type“ or ”A2-type“ tested in
cross-validation on the initial
data set (median PS 5 0.86)
and on the independent data
set (median PS 5 0.61). The re-
maining plots show the distri-
bution for two predictors cor-
responding to random classes. In these cases, the PS scores are much
lower (median PS 5 0.20 and 0.34, respectively), and about half of the
samples fall below the threshold for prediction (PS 5 0.3). A total of
100 such random predictors were examined, to calculate the distri-
bution of median PS scores to evaluate the statistical significance of
the predictor for A1-A2 (36). (C) Schematic representation of the
four-cluster SOM. AML samples are shown as black circles, T-lineage
ALL as open squares, and B-lineage ALL as gray squares. T- and
B-lineages were differentiated on the basis of cell-surface immu-

nophenotyping. Class B1 is exclusively AML, class B2 contains all eight
T-ALLs, and classes B3 and B4 contain the majority of B-ALL samples.
(D) Prediction strength (PS) distributions for pair-wise comparison
among classes. Cross-validation prediction studies show that the four
classes could be distinguished with high prediction scores, with the
exception of classes B3 and B4. These two classes could not be easily
distinguished from one another, consistent with their both containing
primarily B-ALL samples, and suggesting that B3 and B4 might best be
merged into a single class.
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dictors can be constructed for known patholog-
ical categories—reflecting a tumor’s cell of or-
igin, stage, or grade. Such predictors could
provide diagnostic confirmation or clarify un-
usual cases. This point was illustrated by a
recent anecdotal experience. A patient with a
classic leukemia presentation (pancytopenia,
circulating “blasts”) was diagnosed with AML,
but with atypical morphology. We took the
opportunity to apply our class predictor to a
bone marrow sample from this patient. The
classifier produced extremely low vote totals
for both AML and ALL: Neither lymphoid- nor
myeloid-specific genes were highly expressed,
thus bringing into question the diagnosis of
acute leukemia. Examination of the expression
profile revealed that genes more highly ex-
pressed relative to the leukemias included those
encoding tropomyosin, muscle-specific actin,
decorin, and IGF-2, suggestive of a mesenchy-
mal origin, such as muscle (39). In fact, inde-
pendent cytogenetic analysis identified a t(2;
13)(q35;q14) translocation characteristic of the
muscle tumor alveolar rhabdomyosarcoma
(40). The patient’s diagnosis was revised ac-
cordingly, and treatment was changed from
AML therapy to rhabdomyosarcoma therapy.
This experience underscores the fact that leu-
kemia diagnosis remains imperfect and could
benefit from a battery of expression-based pre-
dictors for various cancers.

Most importantly, the technique of class
prediction can be applied to distinctions re-
lating to future clinical outcome, such as drug
response or survival. Class prediction pro-
vides an unbiased, general approach to con-
structing such prognostic tests, provided that
one has a collection of tumor samples for
which eventual outcome is known.
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Sequencing Complex
Polysaccharides
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Although rapid sequencing of polynucleotides and polypeptides has become
commonplace, it has not been possible to rapidly sequence femto- to picomole
amounts of tissue-derived complex polysaccharides. Heparin-like glycosami-
noglycans (HLGAGs) were readily sequenced by a combination of matrix-
assisted laser desorption ionization mass spectrometry and a notation system
for representation of polysaccharide sequences. This will enable identification
of sequences that are critical to HLGAG biological activities in anticoagulation,
cell growth, and differentiation.

The chemical heterogeneity of polysaccha-
rides, their structural complexity, and the lack
of effective tools and methods have seriously
limited the development of a sequencing ap-
proach that is rapid and practical, like that
used for polynucleotides and polypeptides.
This limitation is especially relevant in the
study of glycosaminoglycan (GAG) complex
polysaccharides, which are present at the cell
surface and in the extracellular matrix (1, 2).
Heparin or heparan sulfate–like glycosamino-
glycans (HLGAGs), a subset of GAGs, are
currently used clinically as anticoagulants,
and this function of HLGAGs has been as-
signed to a specific pentasaccharide sequence
that is responsible for binding to antithrombin
III (3). Recent progress in developmental bi-
ology, genetics, and other fields has resulted
in a virtual explosion in the discovery of
important roles for HLGAGs in the biological
activity of morphogens (4) (for example, Wing-
less, Decapentaplegic, and Hedgehog); growth
factors, cytokines, and chemokines (5); en-
zymes (1, 6); and surface proteins of micro-
organisms (7). Although it is increasingly rec-
ognized that a specific sequence, typically from
a tetra- to a decasaccharide in size, is responsi-

ble for HLGAGs’ modulation of biological ac-
tivity, in only a few cases is there any structural
information regarding sequences (8). There-
fore, accelerating our understanding of struc-
ture-function relationships for HLGAGs re-
quires the development of rapid yet thorough
sequencing methodologies.

There are many issues that have limited
the development of sequencing techniques
for HLGAGs. HLGAGs are chemically com-
plex and heterogeneous, because the HLGAG
chain can vary in terms of the number of
disaccharide repeat units and possesses, with-
in the disaccharide repeat unit, four potential
sites for chemical modification. The basic
disaccharide repeat unit of HLGAG is a
uronic acid [a-L-iduronic acid (I) or b-D-
glucuronic acid (G)] linked 1,4 to a-D-hex-
osamine (H) (Fig. 1A). Together, the four
different modifications (24 5 16) for an I or
G uronic acid isomer containing disaccharide
give rise to 16 3 2 5 32 different plausible
disaccharide units for HLGAGs. In contrast,
four bases make up DNA, and 20 amino acids
make up proteins. With these 32 building
blocks, an octasaccharide could have over a
million possible sequences, thereby making
HLGAGs not only the most acidic but also
the most information-dense biopolymers
found in nature. There are no methods avail-
able to amplify or produce HLGAGs in large
amounts, unlike the techniques that are avail-
able for DNA or proteins.

To handle the enormous information den-
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